NERSC Signs Up for Multi-Petaflop “Cascade” Supercomputer

By Michael Feldman

July 3, 2012

The US Department of Energy’s National Energy Research Scientific Computing Center (NERSC) has ordered a two-petaflop “Cascade” supercomputer, Cray’s next-generation HPC platform. The DOE is shelling out $40 million dollars for the system, including about 6.5 petabytes of the company’s Sonexion storage. The contract covers both hardware and services, which will extend over multiple years. Installation is scheduled for sometime in 2013.

The NERSC acquisition represents Cray’s third publicly announced pre-sale of a Cascade system and the first in the US. The other two deals in the pipeline include a multi-petaflop machine destined for HLRS, at the University of Stuttgart, and a 400-teraflop one for Kyoto University.

Cascade is a big step for Cray. Not only does it represent the company’s first foray in Intel-based supercomputing, but it also fills out Cray’s Adaptive Supercomputing vision to a much greater degree than the previous XT and XE product lines. DARPA, which poured hundreds of millions of dollars into the design via the agency’s High Productivity Computing Systems (HPCS) program, helped to make Cascade a much bigger deal than just a platform refresh.

For example, a good portion of the funding went into developing more sophisticated compilers, tools and libraries, including the creation of the Chapel language, all aimed at making the platform more productive and easier to use. The extra money also allowed Cray the breathing room for a critical system redesign, in particular, the opportunity to ditch its AMD Opteron-only architecture.

Although much of the talk surrounding Cascade has been about putting Intel silicon into Cray hardware, the platform is actually designed to support multiple processor types. According to Cray CEO Peter Ungaro, they’ll be able to build blades with AMD processors, as they do now, as well as those with accelerators, like GPUs and Intel MIC (Xeon Phi) coprocessors, and even blades with future ARM chips, if they so desire. “It’s really going to open up our options to have targeted nodes for targeted workloads,” he told HPCwire.

The key is the new Aries interconnect, which is integrated with PCI Express (PCIe), a standard on-board bus that virtually all server processors will support. Prior to this, Cray’s interconnect technology (SeaStar, then Gemini) was tied to HyperTransport, which restricted the company’s supercomputers to AMD CPUs. With the faster speeds of PCIe 3.0, and its ubiquity, the bus technology is now in a position to serve as the underlying substrate for system networks, even for custom interconnects.

All of this potential heterogeneity is likely to be bypassed by NERSC though, at least initially. At a time when many other national labs are opting for GPUs on their fastest machines, NERSC-7 will be based entirely on Intel Xeon CPUs. No GPU or Intel MIC parts are to be used, although future upgrades with those accelerators are theoretically possible. According to Jeff Broughton, who heads NERSC’s Systems Department, the deployment will be based on “the latest generation of Intel processors available at the time of installation.” Given the 2013 timeframe, those chips could very well be Ivy Bridge CPUs rather than the Sandy Bridge parts in the field today.

By going with the more traditional CPU-only platform for NERSC’s first multi-petaflop super, the DOE lab has bucked a trend begun by other national labs like Oak Ridge, NCSA, and TACC , which are using GPUs or, in the case of TACC, Intel MIC accelerators, to get into the double-digit petaflop realm. NERSC-7 was also originally supposed to be a 10-petaflop machine, but getting there via x86 CPUs (that is, not with an IBM Blue Gene or Fujitsu K-type architecture) is not really economically feasible right now without accelerator add-ons.

According to NERSC director Kathy Yelick, the lab supports 4,500 users running hundreds of different codes, across many science disciplines and there is concern about forcing all that software to be rewritten for PCIe-based GPUs or Intel MIC devices. “Current accelerators have a separate memory space and are configured as coprocessors rather than first-class cores, both features that we are hoping will change,” she explained. “So while we are encouraging users to experiment with low-power processor technology, such as GPUs, in our testbeds, we do not think the time is right to transition all of the users.”

They do expect to move their users to some type of low-power manycore architecture over the next several years, but would like to make this transition just once. The first opportunity is likely to present itself with NERSC-8, the next major system procurement following NERSC-7. By the time that system is deployed a few years down the road, the system planners are probably thinking (or at least hoping) there will be a range of integrated low-power manycore architectures to choose from.

That’s a reasonable bet. Certainly, by the middle of the decade, we should at least see the appearance of NVIDIA’s ARM64-GPU “Maxwell” processor, an AMD server-class APU, and an Intel MIC chip integrated with some big Xeon CPU cores.

In the meantime, it should be relatively straightforward to run current user codes on NERSC-7 hardware since the lab’s existing petascale machine, Hopper, is a Cray XE6 system, and from an application point of view, will be nearly indistinguishable from its successor. Getting those codes to scale up to a machine with about twice the performance of Hopper could be somewhat of a challenge, but NERSC sees many potential candidates, both for simulation (LQCD, fusion, turbulence, astrophysics, chemistry, quantum Monte Carlo, molecular dynamics and cloud resolving climate models) and data analysis (bioinformatics and material screening). Of course, few if any applications are expected to use all two petaflops, but these big machines also function quite nicely as capacity clusters.

NERSC is likely to be only one of a number of US national labs signing up for Cascade supercomputers over the next few years. Given DARPA’s DoD pedigree, we should expect, at the very least, to see some defense labs acquire these next-generation Cray machines as they upgrade their HPC machinery.

Cascade will also be an opportunity for Cray to re-establish its dominance at the top of the supercomputing heap in the face of renewed competition from IBM. In the world’s top 100 systems, Blue Gene supercomputers are now the most numerous single platform, outdistancing Cray XT/XE installations by a 21 to 17 margin. That was the result of the recent surge of Blue Gene/Q deployments over the last six months, which was able to capture a lot of new business as it squared off against the now two-year-old Cray XE6.

Cray is certainly expecting great things from Cascade. Over the past eight years, the company has managed to steadily expand sales of its x86 supercomputing portfolio. Starting with its Red Storm supercomputer in 2004, which led to the company’s first commercial x86-based product, XT3, and then to subsequent platforms, XT4, XT5, XT6 and XE6/XK6, Cray has sold more cabinets with each successive generation. “If we keep that trend going,” says Ungaro, “we’ll be in good shape.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire