QUANTUM LEAP IN NET SECURITY: SINGLE PHOTONS ON DEMAND

November 9, 2000

FEATURES & COMMENTARY LIVEwire

Dawn Levy has reported that information flooding the ever-evolving Internet will increasingly take the form of light pulses streaming through fiber-optic cables. But fiber optics brings both solutions and problems. Conceivably, hackers could use beam splitters to divert streams of light and access confidential information without being detected. But if a message were carried by a lone photon — the smallest discrete quantity of light, called a quantum — it would be easier to detect intruders.

“If you have only one photon per pulse, you would immediately know that an eavesdropper had penetrated the system because the receiver at the opposite end could tell that the data had been disturbed,” says Stanford chemistry Professor W. E. Moerner.

He and visiting research associate Dr. Brahim Lounis, now at the UniversitÈ Bordeaux in France, were the first to use lasers to get single molecules to emit single photons on demand at room temperature. The achievement, published in the Sept. 28 issue of the journal Nature, takes cyberspace a quantum leap closer to secure communications.

While quantum communication is still futuristic, Moerner says, it aims to provide the ultimate in secure information transfer. In the next five or 10 years we may use quantum information technology to send messages over channels one photon at a time. Or we may employ quantum cryptography, which uses signals from a single photon to transmit an electronic “key” to decode encrypted messages.

“You want to minimize the probability of emitting two [or more] photons for every pulse because that would allow an eavesdropper to split off one of those photons and read your key without your knowing it,” Moerner says.

Until Moerner and Lounis’s work, the only way to coax single photons from a pulsed laser at room temperature was by attenuation — that is, making the laser beam weaker and weaker until each pulse carried only a small number of photons.

But attenuation is an inefficient way to produce single photons. “You’ll mostly get zero photons per pulse and then a small probability of one photon per pulse and an even smaller probability of two photons per pulse,” Moerner says.

Moerner and Lounis’s system is much more efficient. It can produce single photons 86 percent of the time. It produces no photons 14 percent of the time, and two photons, hardly ever. That nearly zero probability of two-photon emission could be used to ensure the immunity of quantum communications against hacker attacks.

But is getting a single photon 86 percent of the time good enough for communications applications? “It’s far, far better than what [researchers] have now,” Moerner says. “It’s a complex issue of what ‘good enough’ for applications is, but certainly big improvements in efficiency and simplicity help. What they typically work with now is single-photon probabilities around 10 percent or less.”

The system in essence turns a single molecule into a light source. But it’s not a classical light source like a lamp, where the light-bulb filament heats up and many photons boil chaotically off the filament surface. This light source is quantum-mechanical, emitting only one photon at a time.

“The beauty of this whole idea is that it’s so straightforward,” Moerner says. “A simple room-temperature apparatus can generate this quantum mechanical light source.”

How does it work? Short, fast pulses of infrared light shoot out of a laser. But red is not an energetic enough color (wavelength) for the purposes of the experiment, so the light next travels through a device called a second harmonic generator that halves its wavelength and doubles its energy. The light that emerges is green, which is energetic enough for the experiment. The light then enters a scanning confocal microscope, which focuses the beam on a thin crystal flake. The flake is made of a very small number of single terrylene molecules embedded in a crystalline slab of p-terphenyl molecules. By moving the laser, scientists can aim the beam at a single terrylene molecule. Light hits the single molecule with the right amount of energy to “pump” it from its ground state to its excited state, causing it to — voil‡! — release a single photon.

Moerner, previously at the University of California-San Diego for three and a half years, and IBM Almaden for 13 years before that, has been at Stanford only a year and a half. He funded the project partly with Stanford money and used equipment that was purchased with a prior grant from the National Science Foundation.

“We like to explore single molecules any way we can,” says Moerner, whose group of six graduate students and postdoctoral scholars currently is concentrating on studying the behavior of single protein molecules.

In 1989, his group at IBM was the first to use lasers to select, probe and measure the properties of individual molecules. Similarly, Steve Chu, a professor in the departments of Physics and Applied Physics, and his research group have used lasers to study the characteristics of single polymers, or chains of repeating molecules. Other Stanford researchers using lasers to study single molecules include Professors Richard Zare (chemistry), Steven Block (applied physics and biological sciences) and James Spudich (biochemistry and developmental biology).

And one other Stanford researcher uses lasers to produce lone photons. But his method doesn’t use single molecules. At extremely low temperatures (near absolute zero), Yoshihisa Yamamoto, professor of electrical engineering and applied physics, has created an electronic “turnstile” that allows passage of a single photon — or multiple photons if desired — in a controllable way.

Practical single-photon sources may be implemented in real-world communications systems in five to 10 years, Moerner predicts: “There are a number of research projects at major labs. There’s been a group at IBM, for example, working on a quantum communication channel. There’s no product at the moment, but it’s in the development stage.”

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire