SAS Brings High Performance Analytics to Database Appliances

By Michael Feldman

April 19, 2011

In early April the SAS Institute (SAS) announced it had integrated its most advanced analytics software into database appliances from EMC Greenplum and Teradata Corporation. The new offerings marry high performance computing to “big data” and are designed to enable users to perform deep analysis on huge datasets hosted on purpose-built, parallel computing platforms.

Today SAS is considered the undisputed leader in advanced analytics — that according to IDC who, in 2009, pegged the company with a 34.7 percent market share in this category. A subset of business analytics, advanced analytics uses compute-intensive data mining and statistical software techniques to extract complex relationships from databases. For SAS, it’s a half a billion dollar business.

Competitors include IBM’s SPSS and lesser-used offerings from Microsoft, TIBCO, Oracle and others. Revolution Analytics, which recently developed an enterprise-capable version of R for statistical analysis, has only 100 or so deployments at this point, but its leverage of the popular open-source R language introduces a new model for advanced analytics users.

At the simplest level, advanced analytics allow you to develop models and then use them to ask “What if?” questions about your data. For example, developing a statistical model that associates buying behavior with customer profiles can then be applied to future behavior of customers. The application of that model is refered to as “scoring” and is the basis for predictive analytics.

That type of analysis is worlds away from traditional business intelligence, which is more about asking simple questions about data in one or two dimensions (e.g., How many shoes of Brand X do we have in stock?). That kind of analysis is fairly straightforward using a traditional database, needing only a small pipe to get the data in and out and a software component on the client to manage the interface.

“Business intelligence got shanghaied during the 1980s to just mean query and reporting,” says SAS CTO Keith Collins. “We are talking about much more than that.”

According to Collins, the high performance analytics SAS has in mind will be a “game changer” for the industry. He says it will do so by addressing both sides of the problem: the increasing size of enterprise datasets — terabytes, scaling to petabytes — and the need to get actionable intelligence from them in a timely manner. Traditionally, the compute- and data-intensive nature of advanced analytics tools has relegated their use to dataset samples, which not only requires extra time and effort, but also introduces inaccuracies associated with working on incomplete data.

The obvious solution is to put the compute next to the data, in this case, on the high performance data platforms themselves, thus eliminating the need to sample. And since these appliances are essentially HPC clusters (with added storage and software needed to house large databases), the CPUs and memory can be used to run the analytics natively. The data prep, model creation and scoring as well as the actual analytics are performed on the appliance servers, and in parallel fashion.

Conveniently, this can be done within the existing SAS language environment. Customers with legacy code can apply those applications to this new high performance environment with the trivial specification of HP (high performance) at the time of invocation. All of this is made possible by the invention of relatively inexpensive database appliances, which, like the HPC industry in general, has moved from SMP architectures to distributed clustered platforms employing commodity parts, Linux, and x86 CPUs.

In the case of Teradata and Greenplum, the basic appliance hardware is very similar, both based on dual-socket 2.93 GHz Westmere Xeon CPUs and outfitted with 48 GB of memory per node. The Teradata platform uses a proprietary system interconnect called BYNET, while the Greenplum machines rely on standard 10Gig Ethernet.

Storage-wise, the Teradata platform sports 1 and 2 TB SATA drives, and can scale from 45 TB on a single server instance up to 186 PB on 4,096 nodes. Alternatively, the company offers a performance version that uses SSD technology and tops out at 24 TB of total capacity.

Greenplum also has capacity and performance models of its appliance, employing both hard drives and SSDs accordingly. In this case, though, the spinning drives are Serial Attached SCSI. In Greenplum’s high capacity configuration, its appliance scales from 31 TB in a quarter rack up to 744 TB in six full racks.

In early April, SAS demonstrated the power of high performance analytics at its Global Forum meeting. In the first case, two racks (16 nodes) of Greenplum’s Data Computing Appliance (DCA) were used to run a logistic regression of bank loan defaults across a database with a billion records, applying just a few variables. The regression was able to complete in less than 80 seconds (as compared to 20 hours for an unspecified serial implementation). Another demonstration, this time on a 24-node Teradata platform, used 1,800 variables applied to 50 million observations. In this case, the analysis finished in 42 seconds.

Not everyone will require this integrated model for high performance, but every use case for advanced analytics is fair game. This includes everything from fraud detection, loan analysis, customer preference tracking, and financial risk scoring, to improving manufacturing yields. The San Antonio Spurs basketball team has even used the technology to “optimize player performance.”

Collins says the early adopters for its high performance analytics offerings will be in the insurance and financial sectors, where the value obtained is easily transferred to the bottom line. Although he wouldn’t name names, SAS already has some number of companies under trial with the technology. General availability for the product on both the Greenplum and Teradata platforms is scheduled for the fourth quarter of 2011.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between t Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-apples) datacenter and edge categories. Perhaps more interesti Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire