Researchers Challenge NAND Flash with Phase Change Memory

By Michael Feldman

June 6, 2011

A team of researchers at the University of California, San Diego (UCSD) has built a solid state storage system that they claim outperforms state-of-the-art flash memory products. The new system, know as Moneta, uses phase change memory, a technology that some predict will replace the NAND flash memory used in nearly every solid state drive (SSD) today. The UCSD prototype will be on display this week at the Design Automation Conference in San Diego.

Moneta, which is the Latin name for the goddess of memory, uses phase change memory (PCM) module from Micron Technology as the storage medium and employs Xilinx FPGAs as memory controllers. The system DIMM, referred to as Onyx, is a 640 MB device made up of 40 of Micron’s 16 MB PCM (P8P) chips.* The entire system houses 16 of these DIMMs, yielding 10 GB of raw storage: 8 GB usable and 2 GB for error correction and metadata. The card connects to a Linux host via a PCIe x8 link. The prototype and its performance characteristics are described in detail here.

Like NAND flash memory, phase change memory is non-volatile, but it’s a total different digital animal. PCM is based on a metal alloy called chalcogenide and works, as its name suggests, by changing the state of the alloy. To write data, electrical current is applied to generate heat, which switches the alloy between its crystalline and its amorphous state. To read the data back, a smaller current is applied to determine which state the alloy is in.

PCM has several significant advantages over NAND. To begin with, it is inherently more robust than NAND, having an average endurance of 100,000,000 write cycles as compared to 100,000 for enterprise-class SLC NAND. That means the wear leveling algorithm can be much simpler, resulting in less software and memory overhead. PCM is also byte addressable, which means it is much more efficient than NAND at accessing smaller chunks of data, again reducing system complexity. Finally, PCM is just faster. The bits can be switched quickly, and can be flipped in place, avoiding the laborious block erase-and-write cycle required by NAND.

A longer term advantage cited for PCM is that it will scale better than NAND (or even DRAM) as process geometries shrink below 20nm. This has yet to be proven, but it has certainly encouraged companies like Micron and Intel to invest heavily in the technology.

The PCM hardware is only half of the Moneta story though. The system’s real value is contained in the software, which has been tuned for the higher performing PCM. Specifically, they developed a low-level block driver for Moneta that bypasses the Linux I/O scheduler, such that throughput and latency are optimized.

“We’ve found that you can build a much faster storage device, but in order to really make use of it, you have to change the software that manages it as well. Storage systems have evolved over the last 40 years to cater to disks, and disks are very, very slow,” said Steven Swanson, professor of Computer Science and Engineering at UCSD and director of its Non-Volatile Systems Lab (NVSL). “Designing storage systems that can fully leverage technologies like PCM requires rethinking almost every aspect of how a computer system’s software manages and accesses storage. Moneta gives us a window into the future of what computer storage systems are going to look like, and gives us the opportunity now to rethink how we design computer systems in response.”

To prove the technology’s worth, the UCSD team compared Moneta to a well known NAND flash product, in this case, an 80GB Fusion-io ioDrive. However, being a first-generation prototype, the results are somewhat of a mixed bag.

For 512-byte block accesses, Moneta can read data at 327 MB/sec and write at 91 MB/sec; which is between two and seven times faster than the Fusion-io ioDrive. For large data blocks (32K and up), Moneta can read data at 1.1 GB/sec and write data at 371 MB/sec. Here the PCM system is still outrunning the ioDrive for reads, but is actually somewhat slower in writes. The researchers attribute this to the ioDrive’s better aggregate bandwidth associated with its larger memory capacity, all of which is optimized for large block sizes.

Keep in mind that Fusion-io also offers PCIe flash devices with much more capacity and associated bandwidth than the version the UCSD researchers benchmarked. For example, Fusion-io claims 1.5 GB/sec in both reads and writes for its 320 GB ioDrive Duo with 64K block sizes, and 6.0 GB/sec in reads and 4.4 GB/sec in writes for its giant 5TB ioDrive Octal. Obviously size matters.

Other NAND SSD vendors are pushing the capacity/bandwidth envelop as well. Micron’s 700GB P320h flash drive delivers 3 GB/sec for reading and 2 GB/sec for writing (128K blocks); the latest 900GB RamSan-70 card for Texas Memory Systems manages 2 GB/sec reads and 1.4 GB/sec writes; and Virident Systems’ 800GB tachIOn drive tops out at 1.44 GB/sec and 1.2 GB/sec for reads and writes, respectively.

Of course, I/O bandwidth is just a single criteria. Performance under various loads and conditions (like when a drive becomes full) is also important. Cost, latency, longevity, power consumption are other factors that need to be considered.

In the case of power consumption, the UCSD researchers point out that because of the less idiosyncratic behavior of PCM compared to NAND, the software driver is simpler, thus there is a reduction in CPU usage. The researchers say that their Moneta prototype spends between 20 and 50 percent less CPU time performing I/O operations for small requests. That frees up the CPU to do application work and reduces the overall power consumption of the storage system.

The bottom line is that if Moneta can be scaled up to larger memory capacities and aggregate bandwidth on a single PCIe device, its natural advantage in read performance, small (i.e., random) write performance, and endurance will give the NAND-based SSD makers something to think about. The UCSD researchers contend that a PCM-based storage system will be of particular value in applications like high-performance caching systems and key-value stores, that require high performance reads and small writes. For example, applications that do a lot of random I/O, like large graph computations, are especially suited to Moneta-type architectures.

The UCSD team plans to upgrade Moneta in the next six to nine months, using denser and higher performing PCM devices. No PCM roadmap from Micron or anyone else has been made public, but the researchers say that the Moneta technology could be commercially available in just a few years.

*The original version of this story erroneously reported the DIMM and P8P storage specifications in GB rather than MB. –Editor

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose primary use case is to support high IOPS rates to/from a scra Read more…

By John Russell

Lenovo to Debut ‘Neptune’ Cooling Technologies at ISC ‘18

June 19, 2018

Lenovo today announced a set of cooling technologies, dubbed Neptune, that include direct to node (DTN) warm water cooling, rear door heat exchanger (RDHX), and hybrid solutions that combine air and liquid cooling. Lenov Read more…

By John Russell

World Cup is Lame Compared to This Competition

June 18, 2018

So you think World Cup soccer is a big deal? While I’m sure it’s very compelling to watch a bunch of athletes kick a ball around, World Cup misses the boat because it doesn’t include teams putting together their ow Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

IBM Demonstrates Deep Neural Network Training with Analog Memory Devices

June 18, 2018

From smarter, more personalized apps to seemingly-ubiquitous Google Assistant and Alexa devices, AI adoption is showing no signs of slowing down – and yet, the hardware used for AI is far from perfect. Currently, GPUs Read more…

By Oliver Peckham

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This