Researchers Challenge NAND Flash with Phase Change Memory

By Michael Feldman

June 6, 2011

A team of researchers at the University of California, San Diego (UCSD) has built a solid state storage system that they claim outperforms state-of-the-art flash memory products. The new system, know as Moneta, uses phase change memory, a technology that some predict will replace the NAND flash memory used in nearly every solid state drive (SSD) today. The UCSD prototype will be on display this week at the Design Automation Conference in San Diego.

Moneta, which is the Latin name for the goddess of memory, uses phase change memory (PCM) module from Micron Technology as the storage medium and employs Xilinx FPGAs as memory controllers. The system DIMM, referred to as Onyx, is a 640 MB device made up of 40 of Micron’s 16 MB PCM (P8P) chips.* The entire system houses 16 of these DIMMs, yielding 10 GB of raw storage: 8 GB usable and 2 GB for error correction and metadata. The card connects to a Linux host via a PCIe x8 link. The prototype and its performance characteristics are described in detail here.

Like NAND flash memory, phase change memory is non-volatile, but it’s a total different digital animal. PCM is based on a metal alloy called chalcogenide and works, as its name suggests, by changing the state of the alloy. To write data, electrical current is applied to generate heat, which switches the alloy between its crystalline and its amorphous state. To read the data back, a smaller current is applied to determine which state the alloy is in.

PCM has several significant advantages over NAND. To begin with, it is inherently more robust than NAND, having an average endurance of 100,000,000 write cycles as compared to 100,000 for enterprise-class SLC NAND. That means the wear leveling algorithm can be much simpler, resulting in less software and memory overhead. PCM is also byte addressable, which means it is much more efficient than NAND at accessing smaller chunks of data, again reducing system complexity. Finally, PCM is just faster. The bits can be switched quickly, and can be flipped in place, avoiding the laborious block erase-and-write cycle required by NAND.

A longer term advantage cited for PCM is that it will scale better than NAND (or even DRAM) as process geometries shrink below 20nm. This has yet to be proven, but it has certainly encouraged companies like Micron and Intel to invest heavily in the technology.

The PCM hardware is only half of the Moneta story though. The system’s real value is contained in the software, which has been tuned for the higher performing PCM. Specifically, they developed a low-level block driver for Moneta that bypasses the Linux I/O scheduler, such that throughput and latency are optimized.

“We’ve found that you can build a much faster storage device, but in order to really make use of it, you have to change the software that manages it as well. Storage systems have evolved over the last 40 years to cater to disks, and disks are very, very slow,” said Steven Swanson, professor of Computer Science and Engineering at UCSD and director of its Non-Volatile Systems Lab (NVSL). “Designing storage systems that can fully leverage technologies like PCM requires rethinking almost every aspect of how a computer system’s software manages and accesses storage. Moneta gives us a window into the future of what computer storage systems are going to look like, and gives us the opportunity now to rethink how we design computer systems in response.”

To prove the technology’s worth, the UCSD team compared Moneta to a well known NAND flash product, in this case, an 80GB Fusion-io ioDrive. However, being a first-generation prototype, the results are somewhat of a mixed bag.

For 512-byte block accesses, Moneta can read data at 327 MB/sec and write at 91 MB/sec; which is between two and seven times faster than the Fusion-io ioDrive. For large data blocks (32K and up), Moneta can read data at 1.1 GB/sec and write data at 371 MB/sec. Here the PCM system is still outrunning the ioDrive for reads, but is actually somewhat slower in writes. The researchers attribute this to the ioDrive’s better aggregate bandwidth associated with its larger memory capacity, all of which is optimized for large block sizes.

Keep in mind that Fusion-io also offers PCIe flash devices with much more capacity and associated bandwidth than the version the UCSD researchers benchmarked. For example, Fusion-io claims 1.5 GB/sec in both reads and writes for its 320 GB ioDrive Duo with 64K block sizes, and 6.0 GB/sec in reads and 4.4 GB/sec in writes for its giant 5TB ioDrive Octal. Obviously size matters.

Other NAND SSD vendors are pushing the capacity/bandwidth envelop as well. Micron’s 700GB P320h flash drive delivers 3 GB/sec for reading and 2 GB/sec for writing (128K blocks); the latest 900GB RamSan-70 card for Texas Memory Systems manages 2 GB/sec reads and 1.4 GB/sec writes; and Virident Systems’ 800GB tachIOn drive tops out at 1.44 GB/sec and 1.2 GB/sec for reads and writes, respectively.

Of course, I/O bandwidth is just a single criteria. Performance under various loads and conditions (like when a drive becomes full) is also important. Cost, latency, longevity, power consumption are other factors that need to be considered.

In the case of power consumption, the UCSD researchers point out that because of the less idiosyncratic behavior of PCM compared to NAND, the software driver is simpler, thus there is a reduction in CPU usage. The researchers say that their Moneta prototype spends between 20 and 50 percent less CPU time performing I/O operations for small requests. That frees up the CPU to do application work and reduces the overall power consumption of the storage system.

The bottom line is that if Moneta can be scaled up to larger memory capacities and aggregate bandwidth on a single PCIe device, its natural advantage in read performance, small (i.e., random) write performance, and endurance will give the NAND-based SSD makers something to think about. The UCSD researchers contend that a PCM-based storage system will be of particular value in applications like high-performance caching systems and key-value stores, that require high performance reads and small writes. For example, applications that do a lot of random I/O, like large graph computations, are especially suited to Moneta-type architectures.

The UCSD team plans to upgrade Moneta in the next six to nine months, using denser and higher performing PCM devices. No PCM roadmap from Micron or anyone else has been made public, but the researchers say that the Moneta technology could be commercially available in just a few years.

*The original version of this story erroneously reported the DIMM and P8P storage specifications in GB rather than MB. –Editor

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This