Researchers Challenge NAND Flash with Phase Change Memory

By Michael Feldman

June 6, 2011

A team of researchers at the University of California, San Diego (UCSD) has built a solid state storage system that they claim outperforms state-of-the-art flash memory products. The new system, know as Moneta, uses phase change memory, a technology that some predict will replace the NAND flash memory used in nearly every solid state drive (SSD) today. The UCSD prototype will be on display this week at the Design Automation Conference in San Diego.

Moneta, which is the Latin name for the goddess of memory, uses phase change memory (PCM) module from Micron Technology as the storage medium and employs Xilinx FPGAs as memory controllers. The system DIMM, referred to as Onyx, is a 640 MB device made up of 40 of Micron’s 16 MB PCM (P8P) chips.* The entire system houses 16 of these DIMMs, yielding 10 GB of raw storage: 8 GB usable and 2 GB for error correction and metadata. The card connects to a Linux host via a PCIe x8 link. The prototype and its performance characteristics are described in detail here.

Like NAND flash memory, phase change memory is non-volatile, but it’s a total different digital animal. PCM is based on a metal alloy called chalcogenide and works, as its name suggests, by changing the state of the alloy. To write data, electrical current is applied to generate heat, which switches the alloy between its crystalline and its amorphous state. To read the data back, a smaller current is applied to determine which state the alloy is in.

PCM has several significant advantages over NAND. To begin with, it is inherently more robust than NAND, having an average endurance of 100,000,000 write cycles as compared to 100,000 for enterprise-class SLC NAND. That means the wear leveling algorithm can be much simpler, resulting in less software and memory overhead. PCM is also byte addressable, which means it is much more efficient than NAND at accessing smaller chunks of data, again reducing system complexity. Finally, PCM is just faster. The bits can be switched quickly, and can be flipped in place, avoiding the laborious block erase-and-write cycle required by NAND.

A longer term advantage cited for PCM is that it will scale better than NAND (or even DRAM) as process geometries shrink below 20nm. This has yet to be proven, but it has certainly encouraged companies like Micron and Intel to invest heavily in the technology.

The PCM hardware is only half of the Moneta story though. The system’s real value is contained in the software, which has been tuned for the higher performing PCM. Specifically, they developed a low-level block driver for Moneta that bypasses the Linux I/O scheduler, such that throughput and latency are optimized.

“We’ve found that you can build a much faster storage device, but in order to really make use of it, you have to change the software that manages it as well. Storage systems have evolved over the last 40 years to cater to disks, and disks are very, very slow,” said Steven Swanson, professor of Computer Science and Engineering at UCSD and director of its Non-Volatile Systems Lab (NVSL). “Designing storage systems that can fully leverage technologies like PCM requires rethinking almost every aspect of how a computer system’s software manages and accesses storage. Moneta gives us a window into the future of what computer storage systems are going to look like, and gives us the opportunity now to rethink how we design computer systems in response.”

To prove the technology’s worth, the UCSD team compared Moneta to a well known NAND flash product, in this case, an 80GB Fusion-io ioDrive. However, being a first-generation prototype, the results are somewhat of a mixed bag.

For 512-byte block accesses, Moneta can read data at 327 MB/sec and write at 91 MB/sec; which is between two and seven times faster than the Fusion-io ioDrive. For large data blocks (32K and up), Moneta can read data at 1.1 GB/sec and write data at 371 MB/sec. Here the PCM system is still outrunning the ioDrive for reads, but is actually somewhat slower in writes. The researchers attribute this to the ioDrive’s better aggregate bandwidth associated with its larger memory capacity, all of which is optimized for large block sizes.

Keep in mind that Fusion-io also offers PCIe flash devices with much more capacity and associated bandwidth than the version the UCSD researchers benchmarked. For example, Fusion-io claims 1.5 GB/sec in both reads and writes for its 320 GB ioDrive Duo with 64K block sizes, and 6.0 GB/sec in reads and 4.4 GB/sec in writes for its giant 5TB ioDrive Octal. Obviously size matters.

Other NAND SSD vendors are pushing the capacity/bandwidth envelop as well. Micron’s 700GB P320h flash drive delivers 3 GB/sec for reading and 2 GB/sec for writing (128K blocks); the latest 900GB RamSan-70 card for Texas Memory Systems manages 2 GB/sec reads and 1.4 GB/sec writes; and Virident Systems’ 800GB tachIOn drive tops out at 1.44 GB/sec and 1.2 GB/sec for reads and writes, respectively.

Of course, I/O bandwidth is just a single criteria. Performance under various loads and conditions (like when a drive becomes full) is also important. Cost, latency, longevity, power consumption are other factors that need to be considered.

In the case of power consumption, the UCSD researchers point out that because of the less idiosyncratic behavior of PCM compared to NAND, the software driver is simpler, thus there is a reduction in CPU usage. The researchers say that their Moneta prototype spends between 20 and 50 percent less CPU time performing I/O operations for small requests. That frees up the CPU to do application work and reduces the overall power consumption of the storage system.

The bottom line is that if Moneta can be scaled up to larger memory capacities and aggregate bandwidth on a single PCIe device, its natural advantage in read performance, small (i.e., random) write performance, and endurance will give the NAND-based SSD makers something to think about. The UCSD researchers contend that a PCM-based storage system will be of particular value in applications like high-performance caching systems and key-value stores, that require high performance reads and small writes. For example, applications that do a lot of random I/O, like large graph computations, are especially suited to Moneta-type architectures.

The UCSD team plans to upgrade Moneta in the next six to nine months, using denser and higher performing PCM devices. No PCM roadmap from Micron or anyone else has been made public, but the researchers say that the Moneta technology could be commercially available in just a few years.

*The original version of this story erroneously reported the DIMM and P8P storage specifications in GB rather than MB. –Editor

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This