Bolstering Extreme Scale Computational Biology

By Nicole Hemsoth

July 31, 2014

According to Dr. Klaus Schulten from the University of Illinois, the molecular dynamics and visualization programs NAMD and VMD, which serve over 300,000 registered users in many fields of biology and medicine, are pushing the limits of extreme scale computational biology. Schulten says these programs can operate on a wide variety of hardware and offer new inroads to medical discovery.

In addition to outlining NAMD and VMD on ARM and GPU developments over the last several years that led to the programs’ extreme performance on Blue Waters, Titan and Stampede, Schulten is known for shedding light on how these fields and programs are enabled by petascale computing. The following Q and A highlights some key features of his research.

klausHPCwire: Can you describe the growth of NAMD and VMD and give us a sense of how these developments have helped computational biology evolve?

Klaus Schulten: NAMD and VMD are programs that permit you to simulate very large biomolecules and effectively taking on the role of a computational microscope—you simulate these molecules and thereby you visualize them. You know their properties from chemistry and biochemistry; you know their structures from biology. Then, just like you simulate a Boeing before you actually build it, you simulate a molecule in the computer to optimize it.

The difference between us and others building similar programs is that we designed the program for parallel computers and for modern software and computer science concepts from the get-go. That meant designing software that went on clusters and then later on parallel computers built around clusters.

That was all until about 2006 when the National Science Foundation decided to invest in a large computer that was a hundred times larger than could be foreseen otherwise, called the petascale computer. We wanted to take advantage of this huge power increase—but not just because we wanted to be 100 times more powerful in what we could simulate, but rather we realized all along that all of our simulations were too small, meaning that a living cell is made of millions and millions of molecules that form associations that cooperate, and we needed to understand how these proteins worked together rather than worked by themselves.

With this big computer we wanted to explore how the molecules of life associate into structures and then cooperate, and this is exactly what we achieved. We solved the structure of the HIV virus, which made of way over 1,000 proteins that form a capsid, and we can now describe it atom-by-atom. Without petascale computing that would have been impossible.

Achieving this meant using the computer in two ways. On one side, we made the computer part of the experiment, literally. When you want to see a virus for a traditional experiment, you must have the physical virus on-hand. But just as Boeing can simulate an airplane, and we can simulate many molecules that you find in living cells, bypassing the physical study and making the computer an integral part of the experiment itself.

So we got data from different kinds of experiments via sources such as crystallography and electron microscopy, and then integrated them into one picture of the virus that gave us a view of the virus at the level of the atom. We could then test it in the second step. Finally we could take this model and simulate it in the computer, carrying out the world’s largest simulation ever done I think even to this point.

At this point we have reached our goal—we could show that the structure is stable to simulate in the computer and could look at its physical properties—but now of course comes the question of what we learned from it.

First we resolved structure atom-by-atom because we wanted to make the container of the virus, the so-called “capsid,” a target of drug treatment. That requires that we know the chemistry of that target, because when you deal with drugs that are molecules, you need to know both sides of direct treatment in chemical detail: you need to know the drug, of course, (very small molecules that are pretty straightforward,) and you need to know the target, which in this case is a huge system of over 1,000 proteins, and each protein itself in a big molecule containing itself several tens of thousands of atoms.

Once we applied drugs to our computational virus then we learned that the drugs most likely work very differently than we thought—we found that the HIV virus is in a way more dangerous and intelligent than we thought.

HIV is like a con artist that that smuggles itself into the cell then persuades the cell to help the virus infect it. Otherwise it’s not at all easy to infect a cell: the virus has to put its own genetic material into the nucleus of the cell, where the living cell has its genetic material, which is so difficult because the nucleus is very protected and very well organized against this kind of intrusion. But the virus talks a cell into helping it to get its genes into the nucleus.

And it is this cooperation that is acted upon by antiviral drugs.

And so now we have the stage of this drama: on the enormous surface of the virus, which is made up of over a thousand proteins, the virus recruits proteins from the infected cell to help it in its vicious strategy to get the virus’ genes inside. That is where antiviral drugs apparently interfere with this coordination with the cell.

HPCwire: ARM and GPU use are central to your research. Can you speak to that angle?

Klaus Schulten: We are one of the technology centers funded by the National Institutes of Health. We’re called the Center for Macromolecular Modeling and Bioinformatics and we’ve received funding for 23 years now and we will receive funding for five more years. The task of the center is to make the absolute best computing technology available to biomedical researchers in the United States.

And our task, since we have shown that we through our research that we can use the modern computing technology (particularly parallel computing) extremely well, is that we not only use it for our own research but that we also make it available for others. Our goal is to be as good or better that the physicists in using computing technology for the benefit of our particular scientific community, which in our case is biomedical research.

I think we are doing very, very well because our software runs extremely effectively on the biggest computers in the world. But it was the same software from the laptop to these big computers, so the individual researcher can learn it on his or her laptop and use it all the way to the big machine. In the same way, if we develop for the big machine it trickles down quickly back to the small machine.

Our task is now to utilize this technology constantly. So from 2006 to 2012 we have been working on making petascale computing possible. We focused on making these programs capable of simulating very, very large systems, hundreds of times larger than before, and also on analyzing and visualizing the results. This meant working on two fronts: on the front of the actual simulation that’s done by the program NAMD, and on the front of the visualization.

Now this is old. Of the new technologies going on, we think that the upcoming technology for the next generations of computers will be ARM chips, which we’ve been very successful in integrating.

But one factor that has never before been so important is the use of power. Now we not only adopt the new generation of chips for our software perhaps two, three years before the first time any scientists outside of our own group will use it, but we have to power profile all of our algorithms and all of our computational strategies.

Before the only thing that counted was how fast we compute. Now the talk is of scalability and making bigger models that effectively make use of bigger machines, and the talk in the lab is constantly about power profiling. Where can we cut corners in power consumption? What new computational strategies should we adopt? So the issue of power consumption is coming into our development work.

HPCwire: So there really aren’t a lot of on-base supercomputers at all, so where and how are you testing these ideas?

Klaus Schulten: First, are the smartphones and tablets. Our priority is to support the software that puts demands on machine so that through a smartphone or tablet you have another input device, an extra monitor or extra output device. But we’re already now well on our way to have the entire programs run on tablets and smartphones.

That went through pretty well, but the main problem is that you have a very, very small monitor, so you must develop a new user interface and that takes time and created a bottleneck for when we can release our software on these devices.

The main point, however, is that computers will be built from these kinds of chips that people expect, and then these kinds of chips will be made available in a form that you can put them in for other interactions and use them for computing. For that moment we will also be ready.

We’ve learned that these are very intelligent chips that can handle power issues in a much more flexible way, which enabled us to add dimension to our computational strategy that we never had before: a totally new culture to prepare us for the next generation of computing.

HPCwire: Let’s talk briefly about what GPUs have lended to computational biology in general.

Klaus Schulten: They were a tremendous benefit because they go two directions. The first is they make very powerful computing possible in the lab for a much less money. It’s very cost-effective computing, and very powerful computing. So the kind of calculations that until just about two, three years ago required a $50,000 computer can be done now with a few-thousand-dollar GPU cluster or even a single GPU board.

In the other direction, many smaller calculations are being made possible through GPUs. We were very early in demonstrating this with our first GPU extended paper, but today many labs work on it very well.

So that is the poor man’s powerful computer, which has been essential in proliferating the methodology and the culture of computing within the biomedical community.

Finally we come to accelerators, which is where Cray has played such a large role, particularly in boosting the speed of Titan and Blue Waters by above a factor of two. So too we can often be better—we are still battling to get more power out of the GPUs. But the effect is that what we expected at first to gain from these computers is doubled or now tripled.

And that of course is when the power of the computer is delineating the scientific frontier. When all of the sudden you can go twice as far, reaching twice as fast into new territory, that’s a huge scientific advancement. That’s what GPUs made possible.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This