Machine Learning Advances Fight Against Cancer

By John Russell

May 18, 2016

Developing effective tools against cancer has been a long, complicated endeavor with successes and disappointments. Despite all, cancer remains the leading cause of death worldwide. Now, machine learning and data analytics are being recruited as tools in the effort fight the disease and show significant promise according to two recent papers.

In one paper – An Analytics Approach to Designing Combination Chemotherapy Regimens for Cancer – researchers from MIT and Stanford “propose models that use machine learning and optimization to suggest regimens to be tested in phase II and phase III trials.” Their work, published in March in Management Science, could help cut costs and speed clinical trials. Importantly, it and focuses on combination therapy, perhaps the toughest to model but which has proven the more effective for most cancers.

The second study, by researchers from Regenstrief Institute and Indiana University School of Informatics and Computing, found that existing algorithms and open source machine learning tools were as good or better than human reviewers in detecting cancer cases using data from free-text pathology reports. Moreover, the computerized approach was faster and less resource intensive in comparison to human counterparts.

This latter study – Towards Better Public Health Reporting Using Existing Off the Shelf Approaches: A Comparison of Alternative Cancer Detection Approaches Using Plaintext Medical Data and Non-dictionary Based Feature Selection – was published last month in Journal of Biomedical Informatics.

The cancer challenge, of course, isn’t new. Cancer kills roughly nine million people each year. While advancing genomics and molecular medicine have made great strides in revealing many of cancer’s underlying causes and proven effective in many cases, definitive cures have remained mostly elusive. One reason is simply there are so many cancers; another is even a single tumor may have many different mutations, each sensitive to a different therapy.

It now turns out that machine learning and analytics may well prove to be especially valuable in approaching cancer drug development and therapy selections. Data mining has certainly been applied before but the confluence of appropriate technologies (analytics and compute) along with sufficient quantities of clinical data and outcomes data are key enablers.

In the first study the focus was on gastric cancer. The authors note that individualized predictions, using their methods, represent a useful tool to patients choosing between multiple treatment options and, when trained on clinical trial outcomes for a particular treatment, can be used to identify promising patient populations on which to test that treatment or to determine if that treatment is promising for a phase III clinical trial. The MIT-Stanford team emphasizes what they think are three “major contributions” their work provides, excerpted below:

  • “Clinical Trial Database. We developed a database containing information about the patient demographics, study characteristics, chemotherapy regimens tested, and outcomes of all phase II and phase III clinical trials for advanced gastric cancer from papers published in the period 1979–2012. Surprisingly, and to the best of our knowledge, such a database did not exist before this study.
  • “Statistical Models Predicting Clinical Trial Outcomes. We train statistical models using the results of previous randomized and nonrandomized clinical trials. We use these models to predict survival and toxicity outcomes of new clinical trials evaluating regimens whose drugs have individually been tested before, but potentially in different combinations or dosages. To our knowledge, this is the first paper to employ statistical models for the prediction of clinical trial outcomes of arbitrary drug combinations and to perform an out-of-sample evaluation of the predictions.
  • “Design of Chemotherapy Regimens. We propose and evaluate tools for suggesting novel chemotherapy regimens to be tested in phase II studies and for selecting previously tested regimens to be further evaluated in phase III clinical trials. Our methodology balances the dual objectives of exploring novel chemotherapy regimens and testing treatments predicted to be highly effective. To our knowledge, this is the first use of statistical models and optimization to design novel chemotherapy regimens based on the results of previous clinical trials.”

The authors note it is inherently challenging to evaluate the performance of their models without actually running clinical trials and they use two techniques to obtain estimates for the quality of regimens selected by their models compared with those actually tested in current clinical practice. “Both techniques indicate that the models might improve the efficacy of the regimens selected for testing in phase III clinical trials without changing toxicity outcomes,” they write. “This evaluation of the proposed models suggests that they merit further testing in a clinical trial setting.”

Cancer Figure

Their study should be read in full as the authors present their methods in detail and their assessment of varying approaches. Listed authors include: Dimitris Bertsimas, Sloan School and Operations Research Center, MIT; Allison O’Hair, Stanford Graduate School of Business; Stephen Relyea, Lincoln Laboratory, MIT; and John Silberholz, Sloan School and Operations Research Center, MIT.

In the second study, researchers found the commonly used algorithms equaled or exceed pathologists in detecting cancer.

“We think that its no longer necessary for humans to spend time reviewing text reports to determine if cancer is present or not,” said study senior author Shaun Grannis, interim director of the Regenstrief Center of Biomedical Informatics. “We have come to the point in time that technology can handle this. A human’s time is better spent helping other humans by providing them with better clinical care.”

“A lot of the work that we will be doing in informatics in the next few years will be focused on how we can benefit from machine learning and artificial intelligence. Everything – physician practices, health care systems, health information exchanges, insurers, as well as public health departments – are awash in oceans of data. How can we hope to make sense of this deluge of data? Humans can’t do it – but computers can.”

The researchers sampled 7,000 free-text pathology reports from over 30 hospitals that participate in the Indiana Health Information Exchange and used open source tools, classification algorithms, and varying feature selection approaches to predict if a report was positive or negative for cancer. The results indicated that a fully automated review yielded results similar or better than those of trained human reviewers, saving both time and money.

The study evaluated the capacity to detect cancer cases from the reports using three non-dictionary feature selection approaches, four feature subset sizes, and five clinical decision models: simple logistic regression, naive bayes, k-nearest neighbor, random forest, and J48 decision tree. The performance of each decision model was evaluated using sensitivity, specificity, accuracy, positive predictive value, and area under the receiver operating characteristics (ROC) curve.

Shaun Grannis
Shaun Grannis

“Machine learning can now support ideas and concepts that we have been aware of for decades, such as a basic understanding of medical terms,” said Grannis. “We found that artificial intelligence was as least as accurate as humans in identifying cancer cases from free-text clinical data. For example the computer ‘learned’ that the word ‘sheet’ or ‘sheets’ signified cancer as ‘sheet’ or ‘sheets of cells’ are used in pathology reports to indicate malignancy.

Grannis emphasized the team’s work “is not an advance in ideas, it’s a major infrastructure advance — we have the technology, we have the data, we have the software from which we saw accurate, rapid review of vast amounts of data without human oversight or supervision.”

The study was conducted with support from the Centers for Disease Control and Prevention. In addition to Grannis, co-authors of the study are Brian E. Dixon (Regenstrief Institute), Huiping Xu (IU Fairbanks School of Public Health), Judy Gichoya (Regenstrief Institute), Burke Mamlin (IU School of Medicine), Yuni Xian (School of Science, IUPUI), and Suranga N. Kasthurirathne (a doctoral student at School of Informatics and Computing at IUPUI).

Link to first paper discussed, An Analytics Approach to Designing Combination Chemotherapy Regimens for Cancer, http://www.mit.edu/~dbertsim/papers/HealthCare/An%20Analytics%20Approach%20to%20Designing%20Clinical%20Trials%20for%20Cancer.pdf

Link to second paper discussed, Towards Better Public Health Reporting Using Existing Off the Shelf Approaches: A Comparison of Alternative Cancer Detection Approaches Using Plaintext Medical Data and Non-dictionary Based Feature Selection, published in Journal of Biomedical Informatics, http://www.sciencedirect.com/science/article/pii/S1532046416000095

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire