Paul Messina Shares Deep Dive Into US Exascale Roadmap

By Tiffany Trader

June 14, 2016

Ahead of ISC 2016, taking place in Frankfurt, Germany, next week, HPCwire reached out to Paul Messina to get an update on the deliverables and timeline for the United States’ Exascale Computing Project. The ten-year project has been charged with standing up at least two capable exascale supercomputers in 2023 as part of the larger National Strategic Computing Initiative (NSCI) launched by the Obama Administration in July 2015.

Earlier this year, Messina, senior strategic advisor and Distinguished Fellow at the U.S. Department of Energy’s Argonne National Laboratory, was selected to lead the project. He oversees a leadership team that includes staff from the six major participating DOE national laboratories: Argonne, Los Alamos, Lawrence Berkeley, Lawrence Livermore, Oak Ridge and Sandia. The program office for ECP is located at Oak Ridge.

“We’re focusing more on delivered performance than the number of FLOPS,” says Messina, recalling that in 1990s, breaking the petaflops barrier required four orders of magnitude speedup in floating point operations per second (FLOPS), ten thousand faster than what was the state of the art at the point. “Now we’re focusing on exascale not exaflops,” Messina adds.

The threshold for a “capable exascale” machine is not as well defined as a FLOPS-based target. Department of Energy (DOE) documents for the coming next-generation CORAL systems – Summit at Oak Ridge, Aurora at Argonne, and Sierra at Livermore – present performance goals in terms of some factor over current systems. Accordingly, acceptance tests for CORAL will be based on a selected set of applications performing some factor relative to previous systems. Messina says that “capable exascale” also means there’s a decent software stack that is useful for a lot of different types of applications.

Messina shared a working definition of “capable exacale” from a presentation he delivered at the OLCF User Meeting last month:

  •   A capable exascale system is defined as a supercomputer that can solve science problems 50X faster (or more complex) than on the 20PF systems (Titan, Sequoia) of today in a power envelope of 20-30 MW and is sufficiently resilient that user intervention due to hardware or system faults is on the order of a week on average.
  •   And has a software stack that meets the needs of a broad spectrum of applications and workloads.

“We need to assure that there are broad societal benefits other than bragging rights,” says Messina. Starting in 2007, the DOE sponsored ten studies intended to prove the mission benefits of exascale computing. Joining in the process were 1,100 stakeholders from across materials science, nuclear energy, high-energy physics, climate studies and other domains. “Every case revealed interesting and important impacts in each of those domains that the participants felt would be enabled by exascale computing power,” observes Messina.

The applications that can be advanced with exascale computing include wind energy, nuclear energy, digital manufacturing, climate science, weather forecasting, and many areas of national security. These are some of the domains with a more obvious benefit to society, says Messina, but there are of course others from fundamental and theoretical domains like astrophysics and quantum chromodynamics, for example.

Taking the case of climate science, exascale computing capability is required for increased realism, number and reliability of model-based climate predictions. Other opportunities include quantification of uncertainty in climate model prediction and more accurate explicit simulation of local to global weather phenomena, including extreme events.

From Giga- to Exa-

As supercomputing has hit its FLOPS marks from giga-, to tera- to peta- and looking ahead to exascale computing, the performance drivers have shifted. “CMOS technology is flattening out and the amount of speedup from transistor improvements has really dropped, so most of the improvement is from parallelism,” says Messina. The trends are well illustrated in this slide.

ECP Messina Performance from Parallelism 2016

Achieving system performance gains over time has grown more challenging with the stalling of Dennard scaling and the end of the “free lunch” situation, where performance increases were a matter of waiting for the next generation of chips. With the trinity of “faster, cheaper, cooler” hardware facing diminishing returns, software is getting increased attention.

Says Messina, a major part of ECP is supporting the development of full-fledged applications that are important to the missions of the DOE and the National Nuclear Security Administration (NNSA) that require exascale computing. ECP is in the process of reviewing proposals that were submitted by the labs to decide which ones are the best candidates for project support. Each application will be tied to a specific goal and a specific problem.

“It’s an important part of the ECP,” observes Messina. “In the past, such projects have focused primarily on some hardware and some of the supporting software, like libraries. That’s important, but we also need to develop simultaneously the applications. It’s only through the applications that we really know what the requirements will be on the supporting software and to some extent on the hardware. And by having a broad set of applications we’ll get the requirements. And that will be part of what we’re funding them for is to interact with the rest of the project.”

Messina reiterates that while the hardware is fairly straight-forward, the software has many dimensions here. “There’s software to have algorithms that are more energy efficient and employ less data movement, algorithms for data management, exascale algorithms and algorithms for discovery, design, and decision,” says Messina.

These and other focus areas are laid out in a 2014 report (from a 2013 study) from the Advanced Scientific Computing Advisory Committee, elucidating the top ten challenges of reaching exascale.

Aside from backing delivery of the required software and hardware technologies necessary for a 2023 exascale machine, the ECP will also contribute to the cost of preparing two or more DOE Office of Science and NNSA facilities to house the coming exascale machines. The labs will, as with previous procurements, be responsible for purchasing the systems; however, given the well-documented exascale challenges, the project is carving out additional funding to supplement facilities work, says Messina.

In alignment with the guiding principles of NSCI, another big part of the ECP mission is to maximize the benefits of HPC for US economic competitiveness and scientific discovery. “One way to think about the economic competitiveness is not just that US industry will be able to use the exascale systems, but that the building blocks of the exascale systems together with the software environment will be such that it will enable affordable, smaller configurations than exascale and that will presumably help a large segment of US industry — companies like General Electric and Boeing for example – but also ones that are not as big.”

As an example of this top-down benefit flow, if an exascale computer consumes 30 MW, a petaflops system should consume only 30 KW, and if the purchase cost of exaflops system is $200 million (the current target), a petaflops computer would cost $200,000.

Integration and co-design is an essential part of the ECP to assure targeted applications will be ready to use the exascale systems productively. Messina reports that co-design is baked into the program. “We expect that the applications teams and the software development teams and the hardware teams will work together to come up with a better design of software, hardware and the applications,” he states. “In addition, though, in the focus area that we call applications development, we are going to fund a small number of co-design centers.”

The DOE funded three co-design centers five years ago, each of which focused on a single application: nuclear energy, combustion, and materials science. The co-design centers in the ECP will be more focused on methods that are used by several applications; for example adaptive mesh refinement (AMR). A co-design center on this area would hook into several applications that require AMR to be efficient. Another example of a potential co-design focus would be particle-in-cell methods. The ECP recently issued an RFP for these co-design centers.

Messina says ECP expects to begin funding on applications and co-design and many of the system software pieces all within this fiscal year, by September 30.

Under PathForward  (the successor to DesignForward and FastForward), there will be RFPs put out to vendors to fund R&D on node and system designs. The draft Technical Requirements are posted at http://www.exascaleinitiative.org/pathforward/.

ECP and its partners are aiming to get the hardware contracts signed by the end of FY2016 or within the start of FY2017. In future years, ECP is likely to have RFPs for ISVs and industry is also expected to be involved, says Messina. “There’s quite a few pieces of software that are commercial and we’d like to get them engaged in evolving their products so they will continue to be useful on future systems,” he adds.

In 2019, the ECP will be working closely with the labs to ramp up to exascale and to determine requirements. While the labs that participate in the CORAL partnership will be issuing the RFPs, not the project, ECP will be providing a lot of the useful information, says Messina.

“Once the contracts are awarded, we in the program will have a pretty good idea of what the hardware will be for the first exascale systems,” he continues. “There are often some changes, but most of it we will know, so we can use those three-to-four years to work on the application codes and the software technology codes.” This goal is to achieve a level of robustness and production quality that will result in working systems by 2023.

ECP Phases PMessina 2016

Dr. Messina will be giving a presentation on the US exascale program at ISC on June 21 from 1:45-2:15 pm local time.

Of course, the US isn’t the only nation coalescing its exascale plans; EU, Japan, and China all have their own programs under way.

Here’s a selection of exascale-relevant ISC sessions:

Exascale Architectures: Disruptions, Denials & Directions

June 21, 2016, 8:30-10:00 am

To Get the Highest Price/Performance/Watt… It’s All about the Memory

08:30 am – 09:00 am

Steve Pawlowski, Micron

Towards Exascale Computing. A Holistic Push through the European H2020 Program

09:00 am – 09:30 am

John Goodacre, University of Manchester

Computing in 2030 – Intel’s View through the Crystal Ball

09:30 am – 10:00 am

Al Gara, Intel

Distinguished Speakers

June 21, 2016, 01:45 pm – 03:15 pm

The Path to Capable Exascale Computing

01:45 pm – 02:15 pm

Paul Messina, ANL and ECP

The Next Flagship Supercomputer in Japan

02:15 pm – 02:45 pm

Yutaka Ishikawa, RIKEN AICS

The New Sunway Supercomputer System at Wuxi (China)

02:45 pm – 03:15 pm

Guangwen Yang, National Supercomputer Center at Wuxi

The HPC in Asia session – taking place Wednesday, June 22, from 08:30 am -10:00 am – will offer updates from multiple countries.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Stampede2 ‘Shocks’ with New Shock Turbulence Insights

August 19, 2019

Shockwaves play roles in everything from high-speed aircraft to supernovae – and now, supercomputer-powered research from the Texas A&M University and the Texas Advanced Computing Center (TACC) is helping to shed l Read more…

By Oliver Peckham

Nanosheet Transistors: The Last Step in Moore’s Law?

August 19, 2019

Forget for a moment the clamor around the decline of Moore’s Law. It's had a brilliant run, something to be marveled at given it’s not a law at all. Squeezing out the last bit of performance that roughly corresponds Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip using standard CMOS fabrication. At Hot Chips 31 in Stanfor Read more…

By Tiffany Trader

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This