Paul Messina Shares Deep Dive Into US Exascale Roadmap

By Tiffany Trader

June 14, 2016

Ahead of ISC 2016, taking place in Frankfurt, Germany, next week, HPCwire reached out to Paul Messina to get an update on the deliverables and timeline for the United States’ Exascale Computing Project. The ten-year project has been charged with standing up at least two capable exascale supercomputers in 2023 as part of the larger National Strategic Computing Initiative (NSCI) launched by the Obama Administration in July 2015.

Earlier this year, Messina, senior strategic advisor and Distinguished Fellow at the U.S. Department of Energy’s Argonne National Laboratory, was selected to lead the project. He oversees a leadership team that includes staff from the six major participating DOE national laboratories: Argonne, Los Alamos, Lawrence Berkeley, Lawrence Livermore, Oak Ridge and Sandia. The program office for ECP is located at Oak Ridge.

“We’re focusing more on delivered performance than the number of FLOPS,” says Messina, recalling that in 1990s, breaking the petaflops barrier required four orders of magnitude speedup in floating point operations per second (FLOPS), ten thousand faster than what was the state of the art at the point. “Now we’re focusing on exascale not exaflops,” Messina adds.

The threshold for a “capable exascale” machine is not as well defined as a FLOPS-based target. Department of Energy (DOE) documents for the coming next-generation CORAL systems – Summit at Oak Ridge, Aurora at Argonne, and Sierra at Livermore – present performance goals in terms of some factor over current systems. Accordingly, acceptance tests for CORAL will be based on a selected set of applications performing some factor relative to previous systems. Messina says that “capable exascale” also means there’s a decent software stack that is useful for a lot of different types of applications.

Messina shared a working definition of “capable exacale” from a presentation he delivered at the OLCF User Meeting last month:

  •   A capable exascale system is defined as a supercomputer that can solve science problems 50X faster (or more complex) than on the 20PF systems (Titan, Sequoia) of today in a power envelope of 20-30 MW and is sufficiently resilient that user intervention due to hardware or system faults is on the order of a week on average.
  •   And has a software stack that meets the needs of a broad spectrum of applications and workloads.

“We need to assure that there are broad societal benefits other than bragging rights,” says Messina. Starting in 2007, the DOE sponsored ten studies intended to prove the mission benefits of exascale computing. Joining in the process were 1,100 stakeholders from across materials science, nuclear energy, high-energy physics, climate studies and other domains. “Every case revealed interesting and important impacts in each of those domains that the participants felt would be enabled by exascale computing power,” observes Messina.

The applications that can be advanced with exascale computing include wind energy, nuclear energy, digital manufacturing, climate science, weather forecasting, and many areas of national security. These are some of the domains with a more obvious benefit to society, says Messina, but there are of course others from fundamental and theoretical domains like astrophysics and quantum chromodynamics, for example.

Taking the case of climate science, exascale computing capability is required for increased realism, number and reliability of model-based climate predictions. Other opportunities include quantification of uncertainty in climate model prediction and more accurate explicit simulation of local to global weather phenomena, including extreme events.

From Giga- to Exa-

As supercomputing has hit its FLOPS marks from giga-, to tera- to peta- and looking ahead to exascale computing, the performance drivers have shifted. “CMOS technology is flattening out and the amount of speedup from transistor improvements has really dropped, so most of the improvement is from parallelism,” says Messina. The trends are well illustrated in this slide.

ECP Messina Performance from Parallelism 2016

Achieving system performance gains over time has grown more challenging with the stalling of Dennard scaling and the end of the “free lunch” situation, where performance increases were a matter of waiting for the next generation of chips. With the trinity of “faster, cheaper, cooler” hardware facing diminishing returns, software is getting increased attention.

Says Messina, a major part of ECP is supporting the development of full-fledged applications that are important to the missions of the DOE and the National Nuclear Security Administration (NNSA) that require exascale computing. ECP is in the process of reviewing proposals that were submitted by the labs to decide which ones are the best candidates for project support. Each application will be tied to a specific goal and a specific problem.

“It’s an important part of the ECP,” observes Messina. “In the past, such projects have focused primarily on some hardware and some of the supporting software, like libraries. That’s important, but we also need to develop simultaneously the applications. It’s only through the applications that we really know what the requirements will be on the supporting software and to some extent on the hardware. And by having a broad set of applications we’ll get the requirements. And that will be part of what we’re funding them for is to interact with the rest of the project.”

Messina reiterates that while the hardware is fairly straight-forward, the software has many dimensions here. “There’s software to have algorithms that are more energy efficient and employ less data movement, algorithms for data management, exascale algorithms and algorithms for discovery, design, and decision,” says Messina.

These and other focus areas are laid out in a 2014 report (from a 2013 study) from the Advanced Scientific Computing Advisory Committee, elucidating the top ten challenges of reaching exascale.

Aside from backing delivery of the required software and hardware technologies necessary for a 2023 exascale machine, the ECP will also contribute to the cost of preparing two or more DOE Office of Science and NNSA facilities to house the coming exascale machines. The labs will, as with previous procurements, be responsible for purchasing the systems; however, given the well-documented exascale challenges, the project is carving out additional funding to supplement facilities work, says Messina.

In alignment with the guiding principles of NSCI, another big part of the ECP mission is to maximize the benefits of HPC for US economic competitiveness and scientific discovery. “One way to think about the economic competitiveness is not just that US industry will be able to use the exascale systems, but that the building blocks of the exascale systems together with the software environment will be such that it will enable affordable, smaller configurations than exascale and that will presumably help a large segment of US industry — companies like General Electric and Boeing for example – but also ones that are not as big.”

As an example of this top-down benefit flow, if an exascale computer consumes 30 MW, a petaflops system should consume only 30 KW, and if the purchase cost of exaflops system is $200 million (the current target), a petaflops computer would cost $200,000.

Integration and co-design is an essential part of the ECP to assure targeted applications will be ready to use the exascale systems productively. Messina reports that co-design is baked into the program. “We expect that the applications teams and the software development teams and the hardware teams will work together to come up with a better design of software, hardware and the applications,” he states. “In addition, though, in the focus area that we call applications development, we are going to fund a small number of co-design centers.”

The DOE funded three co-design centers five years ago, each of which focused on a single application: nuclear energy, combustion, and materials science. The co-design centers in the ECP will be more focused on methods that are used by several applications; for example adaptive mesh refinement (AMR). A co-design center on this area would hook into several applications that require AMR to be efficient. Another example of a potential co-design focus would be particle-in-cell methods. The ECP recently issued an RFP for these co-design centers.

Messina says ECP expects to begin funding on applications and co-design and many of the system software pieces all within this fiscal year, by September 30.

Under PathForward  (the successor to DesignForward and FastForward), there will be RFPs put out to vendors to fund R&D on node and system designs. The draft Technical Requirements are posted at http://www.exascaleinitiative.org/pathforward/.

ECP and its partners are aiming to get the hardware contracts signed by the end of FY2016 or within the start of FY2017. In future years, ECP is likely to have RFPs for ISVs and industry is also expected to be involved, says Messina. “There’s quite a few pieces of software that are commercial and we’d like to get them engaged in evolving their products so they will continue to be useful on future systems,” he adds.

In 2019, the ECP will be working closely with the labs to ramp up to exascale and to determine requirements. While the labs that participate in the CORAL partnership will be issuing the RFPs, not the project, ECP will be providing a lot of the useful information, says Messina.

“Once the contracts are awarded, we in the program will have a pretty good idea of what the hardware will be for the first exascale systems,” he continues. “There are often some changes, but most of it we will know, so we can use those three-to-four years to work on the application codes and the software technology codes.” This goal is to achieve a level of robustness and production quality that will result in working systems by 2023.

ECP Phases PMessina 2016

Dr. Messina will be giving a presentation on the US exascale program at ISC on June 21 from 1:45-2:15 pm local time.

Of course, the US isn’t the only nation coalescing its exascale plans; EU, Japan, and China all have their own programs under way.

Here’s a selection of exascale-relevant ISC sessions:

Exascale Architectures: Disruptions, Denials & Directions

June 21, 2016, 8:30-10:00 am

To Get the Highest Price/Performance/Watt… It’s All about the Memory

08:30 am – 09:00 am

Steve Pawlowski, Micron

Towards Exascale Computing. A Holistic Push through the European H2020 Program

09:00 am – 09:30 am

John Goodacre, University of Manchester

Computing in 2030 – Intel’s View through the Crystal Ball

09:30 am – 10:00 am

Al Gara, Intel

Distinguished Speakers

June 21, 2016, 01:45 pm – 03:15 pm

The Path to Capable Exascale Computing

01:45 pm – 02:15 pm

Paul Messina, ANL and ECP

The Next Flagship Supercomputer in Japan

02:15 pm – 02:45 pm

Yutaka Ishikawa, RIKEN AICS

The New Sunway Supercomputer System at Wuxi (China)

02:45 pm – 03:15 pm

Guangwen Yang, National Supercomputer Center at Wuxi

The HPC in Asia session – taking place Wednesday, June 22, from 08:30 am -10:00 am – will offer updates from multiple countries.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This