IBM Debuts Power8 Chip with NVLink and Three New Systems

By John Russell

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. One of the servers – Power S822LC for High Performance Computing (codenamed “Minsky”) – uses the new chip (Power8 with NVLink) to communicate with P100 Pascal GPUs, NVIDIA’s most recent and highest performing GPU.

The other servers – the Power S821LC and the Power S822LC for Big Data – also leverage GPU acceleration technology (K80 or P100) via PCIe interface and have IBM’s Coherent Accelerator Processor Interface (CAPI) for use with Flash storage and FPGAs. All three servers are standard two-socket additions to IBM’s Linux line.

These introductions, said Sumit Gupta, vice president, High Performance Computing and Analytics, IBM, should be seen as proof of IBM’s ongoing commitment to its vision of accelerated computing as the new paradigm, and of cognitive computing (writ large) and big data analytics as the major drivers (See HPCwire article, Think Fast: IBM Talks Acceleration in HPC and the Enterprise).

Also noteworthy is that the new systems are manufactured by partners. “All three of these OpenPOWER systems leverage the strengths and expertise of OpenPOWER partners, from acceleration capabilities to strengths in design and manufacturing. In the spirit of open we hope that our Industry partners who are manufacturing these systems, Wistron, an OpenPOWER partner, and Supermicro, will deliver Power-based servers to their clients through their routes to market in order to proliferate the OpenPOWER ecosystem,” said Gupta.

IBM.LC Server

IBM says the S822LC server with NVLink embedded at the silicon level “enables data to flow 5x faster” than on a comparable x86-based system. It also substantially reduces the programming barrier to aggressive use of GPUs according to Gupta who has written a more detailed blog on the introductions. This is the first Power8-based system delivered with NVLink according to IBM.

“Moving data from the CPU to the GPU [has been the] bottleneck because with most systems most of it is going through this thin pipe, PCIe. With NVLink the GPU has access to up to half a terabyte of memory that sits on the CPU side of that interconnect,” Gupta told HPCWire. NVLink allows improved transfer of data between both processors which fundamentally makes it easier to program.

“When an application starts, all the data is sitting in the system memory, and you’ve got to move chunks of it over to the GPU,” Gupta continued. “NVLink does three things. It improves the performance because we’ve enabled a fatter pipe between the processors. It enables you to move smaller functions. And it makes programming accelerators easier because you have to do less data management.”

IBM.POWER8.NVLINK

The new Power8 with NVLink processor features 10 cores running up to 3.26 GHz. POWER8 processors in this server have higher memory bandwidth than x86 CPUs, at 115 GB/s and can have as much as ½ a terabyte of system memory per socket.   There are larger caches per core inside the POWER8 processor, and this coupled with the faster cores and memory bandwidth leads to higher application performance and throughput.

The new NVIDIA Tesla P100 GPU accelerator increases floating point performance, delivering 21 teraflops of half-precision, 10.6 teraflops of single-precision, and 5.3 teraflops of double-precision performance. The accelerator includes 16 gigabytes of the HBM2 stacked memory with an on-GPU memory bandwidth of 720 gigabytes per sec (GB/s). The NVIDIA Tesla P100 with NVLink GPU in the SXM2 form factor delivers 14 percent more raw compute performance than the PCIe variant.

Using NVLink, writes Gupta in his blog, provides three major advantages to application acceleration:

  1. Performance: The new Power8 with NVLink processor and the new Tesla P100 GPU have four NVLink interfaces that enable “5x faster communication than a PCIe x16 Gen3 connection used in other systems.” This enables faster data exchange and application performance, by overcoming the limitation of narrow PCIe data pipe into the GPU.
  2. Programmability: The CUDA 8 software and the Page Migration Engine in Tesla P100 enable a unified memory space with automated data management between the system memory connected to the CPU and the GPU memory. Coupled with NVLink, unified memory makes programming GPU accelerators much easier for developers. Applications can be easily accelerated with GPUs by incrementally moving functions from the CPU to the GPU, without having to deal with data management.
  3. More application acceleration: Since NVLink reduces the communication time between the CPU and GPU, it enables smaller pieces of work to be moved to the GPU for acceleration. This means that more parts of an application can be GPU accelerated.

In making the announcements, IBM continued ratcheting up its ‘we’re-better-than-Intel’ rhetoric. Its broad application targets encompass all things big data and analytics, as well as deep learning and cognitive computing.

“The big advantage we are seeing for Power8 in the market has been around data analytics, databases, and high performance computing for machine learning and deep learning, and artificial intelligence,” said Gupta. “Because we have faster cores, we see much better performance, [for example], on databases compared to Intel-based systems. Applications like kinetica, which is an accelerated (GPU optimized) database for deep learning and machine learning, gets the value of NVLink high speed data connection between CPU and GPU.”

Recognizing the uphill battle in winning x86 market share, IBM in the past has emphasized efforts to penetrate hyperscalers as pivotal to its success (see HPCwire article, Handicapping IBM/OpenPOWER’s Odds for Success).

According to the IBM release: “Early testing with one of the world’s largest Internet service providers (Tencent) based in China has shown that a large cluster of the new Power S822LC for Big Data servers was able to run a data-intensive workload three times faster than its former x86-based infrastructure.  Moreover, this result was achieved while reducing the total number of servers used by two-thirds. Given the significant cost benefits of using fewer servers to deliver faster performance, the company is now integrating the new LC servers into its hyperscale data center for big data workloads.”

Sumit Gupta, IBM
Sumit Gupta, IBM

Gupta maintains there’s a big appetite for new Power8-based servers despite the advancing Power9. “Several businesses, research organizations and government bodies have pre-tested early systems and placed their orders. Among those first in line to receive shipments are a large multinational retail corporation and the U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL),” according to the IBM release.

ORNL will use the new systems as a development platform for optimizing applications to take advantage of the built-in NVLink interface technology. The systems will serve as an early-generation test bed for developing demanding applications for Summit, ORNL’s next generation supercomputer that IBM will deliver in 2017 and which will use the Power9 chip. Arthur S. (Buddy) Bland, OLCF project director, is quoted in the press release saying, “As a long-time user of GPUs, we believe that this will improve the performance of our applications and make it easier for the users to deliver great science.”

Building an ecosystem is hard. For IBM and OpenPOWER, many of the diverse pieces needed are seemingly falling into place. Time will tell.

Link to Gupta’s blog: www.ibm.com/blogs/systems/ibm-nvidia-present-nvlink-server-youve-waiting

Image source: IBM

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This