China’s Tianhe-2A will Use Proprietary Accelerator and Boast 95 Petaflops Peak

By John Russell

September 25, 2017

The details of China’s upgrade to Tianhe-2 (MilkyWay-2) – now Tianhe-2A – were revealed last week at the Third International High Performance Computing Forum (IHPCF2017) in China. The Tianhe-2A will use a proprietary accelerator (Matrix-2000), a proprietary network, and provide support for OpenMP and OpenCL. The upgrade is about 25 percent complete and expected to be fully functional by November 2017 according to a report by Jack Dongarra who attended the meeting and has written a fairly detailed summary.

“The most significant enhancement to the system is the upgrade to the TianHe-2 nodes; the old Intel Xeon Phi Knights Corner (KNC) accelerators will be replaced with a proprietary accelerator called the Matrix-2000. In addition, the network has been enhanced, the memory increased, and the number of cabinets expanded. The completed system, when fully integrated with 4,981,760 cores and 3.4 PB of primary memory, will have a theoretical peak performance of 94.97 petaflops, which is roughly double the performance of the existing Tianhe-2 system. NUDT also developed the heterogeneous programming environment for the Matrix-20002 with support for OpenMP and OpenCL,” writes Dongarra (Report on The TianHe-2A System).

Dongarra told HPCwire, “The Matrix-2000 was designed by the NUDT people. They claim it was fabbed in China. They did not want to have the manufacturing process disclosed.”

The Tianhe-2 vaulted China atop the Top500 list in June of 2013 (with 33.9 petaflops Linpack performance) where it stayed until June 2016 when China’s Sunway TaihuLight topped the list with a Linpack of 93 petaflops. The Sunway was China’s first supercomputer to use homegrown processors (see HPCwire article, China Debuts 93-Petaflops ‘Sunway’ with Homegrown Processors). China has held the top two positions ever since.

“The TianHe-2A is one of the three prototype systems for Exascale in China. The others are the TaiHu Light in Wuxi and the Sugon Machine based on X86 architecture,” said Dongarra.

Each of the 17,792 Tianhe-2A compute nodes will use two of Intel’s Ivy Bridge CPUs (12 cores clocked at 2.2 GHz) and two of the new NUDT-designed Matrix-2000 accelerators (128 cores clocked at 1.2 GHz). This combination results in a compute system with 35,584 Ivy Bridge CPUs, 35,584 Matrix-2000 accelerators, reports Dongarra.

Introduction of the China-developed Matrix-2000 accelerator showcases China’s continued progress towards technology independence.

As described by Dongarra, each Matrix- 2000 has 128 compute cores clocked at 1.2 GHz, achieving 2.4576 teraflops of peak performance. The peak power dissipation is about 240 watts and the dimensions are 66mm by 66mm. The accelerator itself is configured with four supernodes (SNs) that are connected through a scalable on-chip communication network. Each SN has 32 compute cores and complies with the cache coherence. The accelerator supports eight DDR4-2400 channels and is integrated with a ×16 PCI Express 3.0 endpoint port. The compute core is an in-order 8~12 stage reduced instruction set computer (RISC) pipeline extended with a 256-bit vector instruction set architecture (ISA). Two 256-bit vector functional units (VFUs) are integrated into each compute core, resulting in 16 double precision FLOPs per cycle. Thus, the peak performance of the Matrix-2000 can be calculated as: 4 SNs × 32 cores × 16 FLOPs per cycle × 1.2 GHz clock = 2.4576 Tflop/s.

As shown below, a TH-2A compute blade is composed of two parts: the CPM (left) and the APU (middle). The CPM integrates four Ivy Bridge CPUs, and the APU integrates four Matrix- 2000 accelerators. Each compute blade contains two heterogeneous compute nodes.

The TH-2A upgrades required the design and implementation of a heterogeneous computing software stack for the Matrix-2000 accelerator writes Dongarra. This software stack provides a compiling and execution environment for OpenMP 4.5 and OpenCL 1.2. The runtime software stack is illustrated in figure below.

“In kernel mode, there is a light-weight Linux-based operating system (OS), with the accelerator device driver embedded within it, running on the Matrix-2000 that provides device resource management and data communication with the host CPU through the PCI Express connection. The OS manages the computing cores through an elaborately designed thread pool mechanism, which enables task scheduling with low overhead and high efficiency.”

China’s rapid advance in supercomputing and its accelerated effort to build its own technology ecosystem has been a hot topic for some time. Dongarra captures the dynamics and technology achievement neatly his summary:

“In February 2015, the US Department of Commerce prevented some Chinese research groups from receiving Intel technology. The department cited concerns about nuclear research being performed on compute systems equipped with Intel components. The research centers affected include: NSCC-G, site of Tianhe-2; the National SC Center Tianjin, site of Tianhe-1A; the NUDT, developer; and the National SC Center Changsha, location of NUDT.

“At the 2015 International Supercomputing Conference (ISC) in Frankfurt, Yutong Lu, the director of the NSCC-G, described the TianHe-2A system (Figure 10). Most of what was shown in her slide in 2015 has been realized in the Matrix-2000 accelerator. They had hoped to replace the Intel KNC accelerator in their TH-2 with the Matrix-2000 by 2016. However, because of delays that has not happened until very recently.

“After the embargo on Intel components by the US Department of Commerce, it has taken NUDT about two years to design and implement a replacement for the Intel Xeon Phi KNC accelerator. Their replacement is about the same level of performance as the current generation of Intel’s Xeon Phi, known as Knights Landing (KNL). Equaling the performance of the state-of-the-art KNL chip and developing the accompanying software stack in such a short time is an impressive result.”

Last week’s IHPCF2017 meeting was sponsored by the Ministry of Science and Technology (MOST) and the National Science Foundation of China (NSFC), organized by NUDT, and hosted by the National Supercomputer Center in Guangzhou (NSCC-GZ); it was held on September 18–20, 2017 in Guangzhou, China. There were roughly 160 attendees, reported Dongarra.

Given this latest announcement, and speculation of what may be happening with the TaihuLight system, the SC17 conference in November should spark interesting discussion. Clearly the international jostling for sway in the race to pre- and full exascale machines continues to heat up.  Just last week, the U.S. Exascale Computing Project announced the retirement of Paul Messina as director and appointment of Doug Kothe as new director.

Expectations are high that Summit (Oak Ridge National Laboratory) will be at or near the top of the Top500 list. Likewise, there’s been speculation that Sierra (Lawrence Livermore National Laboratory) might be ready by then. It’s been awhile since the U.S. was top dog in the Top500. In any case, it will be interesting to see the next batch on LINPACK scores and what shuffling of the Top500 emerges.

Link to Dongarra’s excellent summary paper: https://www.dropbox.com/s/0jyh5qlgok73t1f/TH-2A-report.pdf?dl=0

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This