China’s Tianhe-2A will Use Proprietary Accelerator and Boast 95 Petaflops Peak

By John Russell

September 25, 2017

The details of China’s upgrade to Tianhe-2 (MilkyWay-2) – now Tianhe-2A – were revealed last week at the Third International High Performance Computing Forum (IHPCF2017) in China. The Tianhe-2A will use a proprietary accelerator (Matrix-2000), a proprietary network, and provide support for OpenMP and OpenCL. The upgrade is about 25 percent complete and expected to be fully functional by November 2017 according to a report by Jack Dongarra who attended the meeting and has written a fairly detailed summary.

“The most significant enhancement to the system is the upgrade to the TianHe-2 nodes; the old Intel Xeon Phi Knights Corner (KNC) accelerators will be replaced with a proprietary accelerator called the Matrix-2000. In addition, the network has been enhanced, the memory increased, and the number of cabinets expanded. The completed system, when fully integrated with 4,981,760 cores and 3.4 PB of primary memory, will have a theoretical peak performance of 94.97 petaflops, which is roughly double the performance of the existing Tianhe-2 system. NUDT also developed the heterogeneous programming environment for the Matrix-20002 with support for OpenMP and OpenCL,” writes Dongarra (Report on The TianHe-2A System).

Dongarra told HPCwire, “The Matrix-2000 was designed by the NUDT people. They claim it was fabbed in China. They did not want to have the manufacturing process disclosed.”

The Tianhe-2 vaulted China atop the Top500 list in June of 2013 (with 33.9 petaflops Linpack performance) where it stayed until June 2016 when China’s Sunway TaihuLight topped the list with a Linpack of 93 petaflops. The Sunway was China’s first supercomputer to use homegrown processors (see HPCwire article, China Debuts 93-Petaflops ‘Sunway’ with Homegrown Processors). China has held the top two positions ever since.

“The TianHe-2A is one of the three prototype systems for Exascale in China. The others are the TaiHu Light in Wuxi and the Sugon Machine based on X86 architecture,” said Dongarra.

Each of the 17,792 Tianhe-2A compute nodes will use two of Intel’s Ivy Bridge CPUs (12 cores clocked at 2.2 GHz) and two of the new NUDT-designed Matrix-2000 accelerators (128 cores clocked at 1.2 GHz). This combination results in a compute system with 35,584 Ivy Bridge CPUs, 35,584 Matrix-2000 accelerators, reports Dongarra.

Introduction of the China-developed Matrix-2000 accelerator showcases China’s continued progress towards technology independence.

As described by Dongarra, each Matrix- 2000 has 128 compute cores clocked at 1.2 GHz, achieving 2.4576 teraflops of peak performance. The peak power dissipation is about 240 watts and the dimensions are 66mm by 66mm. The accelerator itself is configured with four supernodes (SNs) that are connected through a scalable on-chip communication network. Each SN has 32 compute cores and complies with the cache coherence. The accelerator supports eight DDR4-2400 channels and is integrated with a ×16 PCI Express 3.0 endpoint port. The compute core is an in-order 8~12 stage reduced instruction set computer (RISC) pipeline extended with a 256-bit vector instruction set architecture (ISA). Two 256-bit vector functional units (VFUs) are integrated into each compute core, resulting in 16 double precision FLOPs per cycle. Thus, the peak performance of the Matrix-2000 can be calculated as: 4 SNs × 32 cores × 16 FLOPs per cycle × 1.2 GHz clock = 2.4576 Tflop/s.

As shown below, a TH-2A compute blade is composed of two parts: the CPM (left) and the APU (middle). The CPM integrates four Ivy Bridge CPUs, and the APU integrates four Matrix- 2000 accelerators. Each compute blade contains two heterogeneous compute nodes.

The TH-2A upgrades required the design and implementation of a heterogeneous computing software stack for the Matrix-2000 accelerator writes Dongarra. This software stack provides a compiling and execution environment for OpenMP 4.5 and OpenCL 1.2. The runtime software stack is illustrated in figure below.

“In kernel mode, there is a light-weight Linux-based operating system (OS), with the accelerator device driver embedded within it, running on the Matrix-2000 that provides device resource management and data communication with the host CPU through the PCI Express connection. The OS manages the computing cores through an elaborately designed thread pool mechanism, which enables task scheduling with low overhead and high efficiency.”

China’s rapid advance in supercomputing and its accelerated effort to build its own technology ecosystem has been a hot topic for some time. Dongarra captures the dynamics and technology achievement neatly his summary:

“In February 2015, the US Department of Commerce prevented some Chinese research groups from receiving Intel technology. The department cited concerns about nuclear research being performed on compute systems equipped with Intel components. The research centers affected include: NSCC-G, site of Tianhe-2; the National SC Center Tianjin, site of Tianhe-1A; the NUDT, developer; and the National SC Center Changsha, location of NUDT.

“At the 2015 International Supercomputing Conference (ISC) in Frankfurt, Yutong Lu, the director of the NSCC-G, described the TianHe-2A system (Figure 10). Most of what was shown in her slide in 2015 has been realized in the Matrix-2000 accelerator. They had hoped to replace the Intel KNC accelerator in their TH-2 with the Matrix-2000 by 2016. However, because of delays that has not happened until very recently.

“After the embargo on Intel components by the US Department of Commerce, it has taken NUDT about two years to design and implement a replacement for the Intel Xeon Phi KNC accelerator. Their replacement is about the same level of performance as the current generation of Intel’s Xeon Phi, known as Knights Landing (KNL). Equaling the performance of the state-of-the-art KNL chip and developing the accompanying software stack in such a short time is an impressive result.”

Last week’s IHPCF2017 meeting was sponsored by the Ministry of Science and Technology (MOST) and the National Science Foundation of China (NSFC), organized by NUDT, and hosted by the National Supercomputer Center in Guangzhou (NSCC-GZ); it was held on September 18–20, 2017 in Guangzhou, China. There were roughly 160 attendees, reported Dongarra.

Given this latest announcement, and speculation of what may be happening with the TaihuLight system, the SC17 conference in November should spark interesting discussion. Clearly the international jostling for sway in the race to pre- and full exascale machines continues to heat up.  Just last week, the U.S. Exascale Computing Project announced the retirement of Paul Messina as director and appointment of Doug Kothe as new director.

Expectations are high that Summit (Oak Ridge National Laboratory) will be at or near the top of the Top500 list. Likewise, there’s been speculation that Sierra (Lawrence Livermore National Laboratory) might be ready by then. It’s been awhile since the U.S. was top dog in the Top500. In any case, it will be interesting to see the next batch on LINPACK scores and what shuffling of the Top500 emerges.

Link to Dongarra’s excellent summary paper: https://www.dropbox.com/s/0jyh5qlgok73t1f/TH-2A-report.pdf?dl=0

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC18: AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Dell EMC’s HPC Chief on Strategy and Emerging Processor Diversity

November 16, 2018

Last January Thierry Pellegrino, a long-time Dell/Dell EMC veteran, became vice president of HPC. His tenure comes at a time when the very definition of HPC is blurring with AI writ large (data analytics, machine learnin Read more…

By John Russell

IBM’s AI-HPC Combine for ‘Intelligent Simulation’: Eliminating the Unnecessary 

November 16, 2018

A powerhouse concept in attaining new knowledge is the notion of the “emergent property,” the combination of formerly stovepiped scientific disciplines and exploratory methods to form cross-disciplinary intelligence Read more…

By Doug Black

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

From Deep Blue to Summit – 30 Years of Supercomputing Innovation

This week, in honor of the 30th anniversary of the SC conference, we are highlighting some of the most significant IBM contributions to supercomputing over the past 30 years. Read more…

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Dell EMC’s HPC Chief on Strategy and Emerging Processor Diversity

November 16, 2018

Last January Thierry Pellegrino, a long-time Dell/Dell EMC veteran, became vice president of HPC. His tenure comes at a time when the very definition of HPC is Read more…

By John Russell

IBM’s AI-HPC Combine for ‘Intelligent Simulation’: Eliminating the Unnecessary 

November 16, 2018

A powerhouse concept in attaining new knowledge is the notion of the “emergent property,” the combination of formerly stovepiped scientific disciplines and Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

At SC18: AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This