China’s Tianhe-2A will Use Proprietary Accelerator and Boast 95 Petaflops Peak

By John Russell

September 25, 2017

The details of China’s upgrade to Tianhe-2 (MilkyWay-2) – now Tianhe-2A – were revealed last week at the Third International High Performance Computing Forum (IHPCF2017) in China. The Tianhe-2A will use a proprietary accelerator (Matrix-2000), a proprietary network, and provide support for OpenMP and OpenCL. The upgrade is about 25 percent complete and expected to be fully functional by November 2017 according to a report by Jack Dongarra who attended the meeting and has written a fairly detailed summary.

“The most significant enhancement to the system is the upgrade to the TianHe-2 nodes; the old Intel Xeon Phi Knights Corner (KNC) accelerators will be replaced with a proprietary accelerator called the Matrix-2000. In addition, the network has been enhanced, the memory increased, and the number of cabinets expanded. The completed system, when fully integrated with 4,981,760 cores and 3.4 PB of primary memory, will have a theoretical peak performance of 94.97 petaflops, which is roughly double the performance of the existing Tianhe-2 system. NUDT also developed the heterogeneous programming environment for the Matrix-20002 with support for OpenMP and OpenCL,” writes Dongarra (Report on The TianHe-2A System).

Dongarra told HPCwire, “The Matrix-2000 was designed by the NUDT people. They claim it was fabbed in China. They did not want to have the manufacturing process disclosed.”

The Tianhe-2 vaulted China atop the Top500 list in June of 2013 (with 33.9 petaflops Linpack performance) where it stayed until June 2016 when China’s Sunway TaihuLight topped the list with a Linpack of 93 petaflops. The Sunway was China’s first supercomputer to use homegrown processors (see HPCwire article, China Debuts 93-Petaflops ‘Sunway’ with Homegrown Processors). China has held the top two positions ever since.

“The TianHe-2A is one of the three prototype systems for Exascale in China. The others are the TaiHu Light in Wuxi and the Sugon Machine based on X86 architecture,” said Dongarra.

Each of the 17,792 Tianhe-2A compute nodes will use two of Intel’s Ivy Bridge CPUs (12 cores clocked at 2.2 GHz) and two of the new NUDT-designed Matrix-2000 accelerators (128 cores clocked at 1.2 GHz). This combination results in a compute system with 35,584 Ivy Bridge CPUs, 35,584 Matrix-2000 accelerators, reports Dongarra.

Introduction of the China-developed Matrix-2000 accelerator showcases China’s continued progress towards technology independence.

As described by Dongarra, each Matrix- 2000 has 128 compute cores clocked at 1.2 GHz, achieving 2.4576 teraflops of peak performance. The peak power dissipation is about 240 watts and the dimensions are 66mm by 66mm. The accelerator itself is configured with four supernodes (SNs) that are connected through a scalable on-chip communication network. Each SN has 32 compute cores and complies with the cache coherence. The accelerator supports eight DDR4-2400 channels and is integrated with a ×16 PCI Express 3.0 endpoint port. The compute core is an in-order 8~12 stage reduced instruction set computer (RISC) pipeline extended with a 256-bit vector instruction set architecture (ISA). Two 256-bit vector functional units (VFUs) are integrated into each compute core, resulting in 16 double precision FLOPs per cycle. Thus, the peak performance of the Matrix-2000 can be calculated as: 4 SNs × 32 cores × 16 FLOPs per cycle × 1.2 GHz clock = 2.4576 Tflop/s.

As shown below, a TH-2A compute blade is composed of two parts: the CPM (left) and the APU (middle). The CPM integrates four Ivy Bridge CPUs, and the APU integrates four Matrix- 2000 accelerators. Each compute blade contains two heterogeneous compute nodes.

The TH-2A upgrades required the design and implementation of a heterogeneous computing software stack for the Matrix-2000 accelerator writes Dongarra. This software stack provides a compiling and execution environment for OpenMP 4.5 and OpenCL 1.2. The runtime software stack is illustrated in figure below.

“In kernel mode, there is a light-weight Linux-based operating system (OS), with the accelerator device driver embedded within it, running on the Matrix-2000 that provides device resource management and data communication with the host CPU through the PCI Express connection. The OS manages the computing cores through an elaborately designed thread pool mechanism, which enables task scheduling with low overhead and high efficiency.”

China’s rapid advance in supercomputing and its accelerated effort to build its own technology ecosystem has been a hot topic for some time. Dongarra captures the dynamics and technology achievement neatly his summary:

“In February 2015, the US Department of Commerce prevented some Chinese research groups from receiving Intel technology. The department cited concerns about nuclear research being performed on compute systems equipped with Intel components. The research centers affected include: NSCC-G, site of Tianhe-2; the National SC Center Tianjin, site of Tianhe-1A; the NUDT, developer; and the National SC Center Changsha, location of NUDT.

“At the 2015 International Supercomputing Conference (ISC) in Frankfurt, Yutong Lu, the director of the NSCC-G, described the TianHe-2A system (Figure 10). Most of what was shown in her slide in 2015 has been realized in the Matrix-2000 accelerator. They had hoped to replace the Intel KNC accelerator in their TH-2 with the Matrix-2000 by 2016. However, because of delays that has not happened until very recently.

“After the embargo on Intel components by the US Department of Commerce, it has taken NUDT about two years to design and implement a replacement for the Intel Xeon Phi KNC accelerator. Their replacement is about the same level of performance as the current generation of Intel’s Xeon Phi, known as Knights Landing (KNL). Equaling the performance of the state-of-the-art KNL chip and developing the accompanying software stack in such a short time is an impressive result.”

Last week’s IHPCF2017 meeting was sponsored by the Ministry of Science and Technology (MOST) and the National Science Foundation of China (NSFC), organized by NUDT, and hosted by the National Supercomputer Center in Guangzhou (NSCC-GZ); it was held on September 18–20, 2017 in Guangzhou, China. There were roughly 160 attendees, reported Dongarra.

Given this latest announcement, and speculation of what may be happening with the TaihuLight system, the SC17 conference in November should spark interesting discussion. Clearly the international jostling for sway in the race to pre- and full exascale machines continues to heat up.  Just last week, the U.S. Exascale Computing Project announced the retirement of Paul Messina as director and appointment of Doug Kothe as new director.

Expectations are high that Summit (Oak Ridge National Laboratory) will be at or near the top of the Top500 list. Likewise, there’s been speculation that Sierra (Lawrence Livermore National Laboratory) might be ready by then. It’s been awhile since the U.S. was top dog in the Top500. In any case, it will be interesting to see the next batch on LINPACK scores and what shuffling of the Top500 emerges.

Link to Dongarra’s excellent summary paper: https://www.dropbox.com/s/0jyh5qlgok73t1f/TH-2A-report.pdf?dl=0

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire