Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

By Rob Farber

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify extreme weather events in huge climate simulation datasets. Predictive accuracies ranging from 89.4% to as high as 99.1% show that trained deep learning neural networks (DNNs) can identify weather fronts, tropical cyclones, and long narrow air flows that transport water vapor from the tropics called atmospheric rivers. As with image recognition, Michael Wehner (senior staff scientist, LBNL) noted they found the machine learning output outperforms humans. [i]

The strong relationship between ground truth and the neural network prediction can be seen in the classification plus regression results reported by Wehner at the recent Intel Developer Conference in Denver, Colorado.

Figure 1: Relation between ground truth (green boxes) and classification plus regression results (red boxes) of the DNN trained to recognize atmospheric phenomena (results courtesy NERSC)

When explaining the importance of this work, Wehner believes that the big impact lies in assessing the impact of climate change as exemplified by the recent painful experiences of hurricanes Harvey (tied with hurricane Katrina as the costliest tropical cyclone on record), Irma (the strongest storm on record to exist in the open Atlantic region), and Maria (regarded as the worst natural disaster on record in Dominica and Puerto Rico).

AI needed to evaluate faster and more accurate climate models

The performance of modern leadership class supercomputers like the CPU-based NERSC Cori system provides scientists an extraordinary tool to model climate change significantly faster and far more accurately than was possible on previous generation supercomputers. For example, Wehner believes that simulated storms can run 300x to 10,000x faster than real time[ii]. This meets the needs of climate scientists who need to run many-century long simulations to evaluate the impact of climate change far into the future.

Wehner pointed out that while humans can (and do) perform well in identifying and tracking extreme weather events in real time, they simply cannot keep up when climate models run two to five orders of magnitude faster. Thus machine learning has to be used to identify and track extreme weather events. Further, these machine learning based results can be used to validate the climate models so we have confidence in the future predictions of these models.

More powerful machines also means that scientists are able to run climate models with higher spatial resolution.

Utilizing higher spatial resolution models, Wehner points is necessary because only high resolution climate models (<25Km) can realistically reproduce extreme storms[iii]. The challenge for climate and computational scientists is that these higher spatial resolution models generate tens to hundreds of terabytes of data, thus increasing the challenges of evaluating the output of these models.

Visually, the benefits of higher spatial resolution models can be easily seen in the comparative images between a 200 km and 25 km spatial resolution simulation shown below.

Figure 2: Comparative results showing the additional detail that is modeled by a 25 Km spatial resolution model as opposed to a 200 Km model. (Image courtesy NERSC)

Valuable insight as well as confirmation of human intuition can be obtained from these long-term high resolution climate simulations. The following figure, for example, represents an assessment of what will happen to the number and intensity of hurricanes as the climate warms. The chart reflects the results of 75 million hours of climate simulation on the Cori supercomputer. The conclusion from this study is that a world that is 1.5oC and 2oC warmer that today will experience more frequent and intense hurricanes. [iv]

Figure 3: Projected increase in category 5 hurricanes and decrease in weaker tropical storms due to climate change. Number of storms is measured on the y-axis (Image courtesy NERSC)

Scaling deep learning from images to climate

Reflecting the thought behind the research, Prabhat, (Director Big Data Center, NERSC) observes that identifying phenomena in climate data is analogous to commercial vision applications as shown in the following slide from his Intel Developer Conference keynote presentation.

Figure 4: Intuition showing that conventional DNNs could potentially recognize atmospheric phenomena (Image courtesy NERSC)

Prabhat points out that initial supervised training results show that this analogy is correct in that machine learning was able to train and recognize each of three desired atmospheric phenomena with high accuracy.

Figure 5: Initial supervised learning results [v] (Courtesy NERSC).
Researchers from MILA, NERSC and Microsoft teamed up to create[vi] a novel semi-supervised convolutional DNN architecture that was able to do the work of all three individual supervised DNNs at the same time. Essentially, this novel neural network finds the bounding box size and location when it classifies the atmospheric phenomena. Further, the neural network also associates a probability with the classification. The high correspondence between prediction and ground truth are shown in Figure 1. Prabhat notes that refining the size of the bounding box is a work in progress.

Figure 6: Novel semi-supervised learning architecture used to classify atmospheric phenomena and demonstrate petascale training performance on the NERSC Intel Xeon Phi computational nodes (Image courtesy NERSC)

Training DNNs at 15 PF/s and with strong scaling

This climate problem was used in a collaborative effort between Intel, NERSC and Stanford to demonstrate the fastest and most scalable deep-learning training implementation in the world according to the authors of the paper Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data. More specifically, the authors report that a configuration of 9600 self-hosted 1.4GHz Intel Xeon Phi Processor 7250 based nodes achieved a peak rate between 11.73 and 15.07 PF/s and an average sustained performance of 11.41 to 13.47 PF/s.

The following strong scaling plots (below) show that the hybrid approach advocated by Kurth, et. al. scales well to run on the thousands of Cori nodes. Ioannis Mitliagkas (former Postdoctoral scholar at Stanford and currently Assistant Professor at the University of Montreal) emphatically states, “People typically report weak scaling, because strong scaling is hard.” He continues, “For machine learning systems, strong scaling (keeping the total amount of work constant) is more representative of actual performance.”[vii]

Figure 7: Strong scaling results for synchronous and hybrid approaches (batch size = 2048 per synchronous group).

Summary

Powerful leadership class supercomputers like the CPU-based Cori supercomputer have made fast, accurate global climate simulations possible. Innovations such as the petascale capable hybrid machine learning technique pioneered by Intel, NERSC and Stanford means those same machines can also train DNNs to evaluate the tens to hundreds of terabytes of data created by these faster and more accurate climate simulations.

About the Author

Rob Farber is a global technology consultant and author with an extensive background in HPC and in developing machine learning technology that he applies at national labs and commercial organizations. Rob can be reached at [email protected].

[i] https://software.intel.com/en-us/events/hpc-devcon/2017/keynote?multiplayer=5646473936001

[ii] ibid

[iii] ibid

[iv] ibid

[v] https://arxiv.org/abs/1605.01156

[vi] https://papers.nips.cc/paper/6932-extremeweather-a-large-scale-climate-dataset-for-semi-supervised-detection-localization-and-understanding-of-extreme-weather-events.pdf

[vii] The authors point out that weak scaling is easy to achieve! However, it is not representative of true performance as it increases the total batch size as the scale increases. They note that most people who claim to be doing large-scale ML/DL report weak scaling. Strong scaling is more representative of true performance and it is hard to achieve. In strong scaling the batch size used per synchronous group is fixed: this means that no wasted computation happens at large scales. See Ameet Talwalkar’s paper and online tool (Paleo) for a model of DL system performance and good demonstrations on how strong scaling suffers for real systems. In terms of the hardware efficiency, hybrid systems can deliver superior strong scaling (this is what the top plots are showing).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Simulating Car Crashes with Supercomputers – and Lego

October 18, 2019

It’s an experiment many of us have carried out at home: crashing two Lego creations into each other, bricks flying everywhere. But for the researchers at the General German Automobile Club (ADAC) – which is comparabl Read more…

By Oliver Peckham

NASA Uses Deep Learning to Monitor Solar Weather

October 17, 2019

Solar flares may be best-known as sci-fi MacGuffins, but those flares – and other space weather – can have serious impacts on not only spacecraft and satellites, but also on Earth-based systems such as radio communic Read more…

By Oliver Peckham

Federated Learning Applied to Cancer Research

October 17, 2019

The ability to share and analyze data while protecting patient privacy is giving medical researchers a new tool in their efforts to use what one vendor calls “federated learning” to train models based on diverse data Read more…

By George Leopold

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departure from past practice, the NSB has divided the 2020 S&E Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

How Do We Power the New Industrial Revolution?

[Attend the IBM LSF, HPC & AI User Group Meeting at SC19 in Denver on November 19!]

Almost everyone is talking about artificial intelligence (AI). Read more…

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departu Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This