Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

By Rob Farber

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify extreme weather events in huge climate simulation datasets. Predictive accuracies ranging from 89.4% to as high as 99.1% show that trained deep learning neural networks (DNNs) can identify weather fronts, tropical cyclones, and long narrow air flows that transport water vapor from the tropics called atmospheric rivers. As with image recognition, Michael Wehner (senior staff scientist, LBNL) noted they found the machine learning output outperforms humans. [i]

The strong relationship between ground truth and the neural network prediction can be seen in the classification plus regression results reported by Wehner at the recent Intel Developer Conference in Denver, Colorado.

Figure 1: Relation between ground truth (green boxes) and classification plus regression results (red boxes) of the DNN trained to recognize atmospheric phenomena (results courtesy NERSC)

When explaining the importance of this work, Wehner believes that the big impact lies in assessing the impact of climate change as exemplified by the recent painful experiences of hurricanes Harvey (tied with hurricane Katrina as the costliest tropical cyclone on record), Irma (the strongest storm on record to exist in the open Atlantic region), and Maria (regarded as the worst natural disaster on record in Dominica and Puerto Rico).

AI needed to evaluate faster and more accurate climate models

The performance of modern leadership class supercomputers like the CPU-based NERSC Cori system provides scientists an extraordinary tool to model climate change significantly faster and far more accurately than was possible on previous generation supercomputers. For example, Wehner believes that simulated storms can run 300x to 10,000x faster than real time[ii]. This meets the needs of climate scientists who need to run many-century long simulations to evaluate the impact of climate change far into the future.

Wehner pointed out that while humans can (and do) perform well in identifying and tracking extreme weather events in real time, they simply cannot keep up when climate models run two to five orders of magnitude faster. Thus machine learning has to be used to identify and track extreme weather events. Further, these machine learning based results can be used to validate the climate models so we have confidence in the future predictions of these models.

More powerful machines also means that scientists are able to run climate models with higher spatial resolution.

Utilizing higher spatial resolution models, Wehner points is necessary because only high resolution climate models (<25Km) can realistically reproduce extreme storms[iii]. The challenge for climate and computational scientists is that these higher spatial resolution models generate tens to hundreds of terabytes of data, thus increasing the challenges of evaluating the output of these models.

Visually, the benefits of higher spatial resolution models can be easily seen in the comparative images between a 200 km and 25 km spatial resolution simulation shown below.

Figure 2: Comparative results showing the additional detail that is modeled by a 25 Km spatial resolution model as opposed to a 200 Km model. (Image courtesy NERSC)

Valuable insight as well as confirmation of human intuition can be obtained from these long-term high resolution climate simulations. The following figure, for example, represents an assessment of what will happen to the number and intensity of hurricanes as the climate warms. The chart reflects the results of 75 million hours of climate simulation on the Cori supercomputer. The conclusion from this study is that a world that is 1.5oC and 2oC warmer that today will experience more frequent and intense hurricanes. [iv]

Figure 3: Projected increase in category 5 hurricanes and decrease in weaker tropical storms due to climate change. Number of storms is measured on the y-axis (Image courtesy NERSC)

Scaling deep learning from images to climate

Reflecting the thought behind the research, Prabhat, (Director Big Data Center, NERSC) observes that identifying phenomena in climate data is analogous to commercial vision applications as shown in the following slide from his Intel Developer Conference keynote presentation.

Figure 4: Intuition showing that conventional DNNs could potentially recognize atmospheric phenomena (Image courtesy NERSC)

Prabhat points out that initial supervised training results show that this analogy is correct in that machine learning was able to train and recognize each of three desired atmospheric phenomena with high accuracy.

Figure 5: Initial supervised learning results [v] (Courtesy NERSC).
Researchers from MILA, NERSC and Microsoft teamed up to create[vi] a novel semi-supervised convolutional DNN architecture that was able to do the work of all three individual supervised DNNs at the same time. Essentially, this novel neural network finds the bounding box size and location when it classifies the atmospheric phenomena. Further, the neural network also associates a probability with the classification. The high correspondence between prediction and ground truth are shown in Figure 1. Prabhat notes that refining the size of the bounding box is a work in progress.

Figure 6: Novel semi-supervised learning architecture used to classify atmospheric phenomena and demonstrate petascale training performance on the NERSC Intel Xeon Phi computational nodes (Image courtesy NERSC)

Training DNNs at 15 PF/s and with strong scaling

This climate problem was used in a collaborative effort between Intel, NERSC and Stanford to demonstrate the fastest and most scalable deep-learning training implementation in the world according to the authors of the paper Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data. More specifically, the authors report that a configuration of 9600 self-hosted 1.4GHz Intel Xeon Phi Processor 7250 based nodes achieved a peak rate between 11.73 and 15.07 PF/s and an average sustained performance of 11.41 to 13.47 PF/s.

The following strong scaling plots (below) show that the hybrid approach advocated by Kurth, et. al. scales well to run on the thousands of Cori nodes. Ioannis Mitliagkas (former Postdoctoral scholar at Stanford and currently Assistant Professor at the University of Montreal) emphatically states, “People typically report weak scaling, because strong scaling is hard.” He continues, “For machine learning systems, strong scaling (keeping the total amount of work constant) is more representative of actual performance.”[vii]

Figure 7: Strong scaling results for synchronous and hybrid approaches (batch size = 2048 per synchronous group).

Summary

Powerful leadership class supercomputers like the CPU-based Cori supercomputer have made fast, accurate global climate simulations possible. Innovations such as the petascale capable hybrid machine learning technique pioneered by Intel, NERSC and Stanford means those same machines can also train DNNs to evaluate the tens to hundreds of terabytes of data created by these faster and more accurate climate simulations.

About the Author

Rob Farber is a global technology consultant and author with an extensive background in HPC and in developing machine learning technology that he applies at national labs and commercial organizations. Rob can be reached at [email protected].

[i] https://software.intel.com/en-us/events/hpc-devcon/2017/keynote?multiplayer=5646473936001

[ii] ibid

[iii] ibid

[iv] ibid

[v] https://arxiv.org/abs/1605.01156

[vi] https://papers.nips.cc/paper/6932-extremeweather-a-large-scale-climate-dataset-for-semi-supervised-detection-localization-and-understanding-of-extreme-weather-events.pdf

[vii] The authors point out that weak scaling is easy to achieve! However, it is not representative of true performance as it increases the total batch size as the scale increases. They note that most people who claim to be doing large-scale ML/DL report weak scaling. Strong scaling is more representative of true performance and it is hard to achieve. In strong scaling the batch size used per synchronous group is fixed: this means that no wasted computation happens at large scales. See Ameet Talwalkar’s paper and online tool (Paleo) for a model of DL system performance and good demonstrations on how strong scaling suffers for real systems. In terms of the hardware efficiency, hybrid systems can deliver superior strong scaling (this is what the top plots are showing).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its intention to make Arm a full citizen in the processing arch Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition of HPC leader Jack Wells, director of science, Oak Ridge Le Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

5 Benefits Artificial Intelligence Brings to HPC

According to findings from Hyperion Research, simulation is primarily responsible for expanding the global HPC market from $2 billion in 1990 to a projected $38 billion in 2022. Read more…

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage and data management for AI, big data and HPC acceleration. I Read more…

By Doug Black

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition Read more…

By John Russell

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage Read more…

By Doug Black

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This