Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

By Rob Farber

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify extreme weather events in huge climate simulation datasets. Predictive accuracies ranging from 89.4% to as high as 99.1% show that trained deep learning neural networks (DNNs) can identify weather fronts, tropical cyclones, and long narrow air flows that transport water vapor from the tropics called atmospheric rivers. As with image recognition, Michael Wehner (senior staff scientist, LBNL) noted they found the machine learning output outperforms humans. [i]

The strong relationship between ground truth and the neural network prediction can be seen in the classification plus regression results reported by Wehner at the recent Intel Developer Conference in Denver, Colorado.

Figure 1: Relation between ground truth (green boxes) and classification plus regression results (red boxes) of the DNN trained to recognize atmospheric phenomena (results courtesy NERSC)

When explaining the importance of this work, Wehner believes that the big impact lies in assessing the impact of climate change as exemplified by the recent painful experiences of hurricanes Harvey (tied with hurricane Katrina as the costliest tropical cyclone on record), Irma (the strongest storm on record to exist in the open Atlantic region), and Maria (regarded as the worst natural disaster on record in Dominica and Puerto Rico).

AI needed to evaluate faster and more accurate climate models

The performance of modern leadership class supercomputers like the CPU-based NERSC Cori system provides scientists an extraordinary tool to model climate change significantly faster and far more accurately than was possible on previous generation supercomputers. For example, Wehner believes that simulated storms can run 300x to 10,000x faster than real time[ii]. This meets the needs of climate scientists who need to run many-century long simulations to evaluate the impact of climate change far into the future.

Wehner pointed out that while humans can (and do) perform well in identifying and tracking extreme weather events in real time, they simply cannot keep up when climate models run two to five orders of magnitude faster. Thus machine learning has to be used to identify and track extreme weather events. Further, these machine learning based results can be used to validate the climate models so we have confidence in the future predictions of these models.

More powerful machines also means that scientists are able to run climate models with higher spatial resolution.

Utilizing higher spatial resolution models, Wehner points is necessary because only high resolution climate models (<25Km) can realistically reproduce extreme storms[iii]. The challenge for climate and computational scientists is that these higher spatial resolution models generate tens to hundreds of terabytes of data, thus increasing the challenges of evaluating the output of these models.

Visually, the benefits of higher spatial resolution models can be easily seen in the comparative images between a 200 km and 25 km spatial resolution simulation shown below.

Figure 2: Comparative results showing the additional detail that is modeled by a 25 Km spatial resolution model as opposed to a 200 Km model. (Image courtesy NERSC)

Valuable insight as well as confirmation of human intuition can be obtained from these long-term high resolution climate simulations. The following figure, for example, represents an assessment of what will happen to the number and intensity of hurricanes as the climate warms. The chart reflects the results of 75 million hours of climate simulation on the Cori supercomputer. The conclusion from this study is that a world that is 1.5oC and 2oC warmer that today will experience more frequent and intense hurricanes. [iv]

Figure 3: Projected increase in category 5 hurricanes and decrease in weaker tropical storms due to climate change. Number of storms is measured on the y-axis (Image courtesy NERSC)

Scaling deep learning from images to climate

Reflecting the thought behind the research, Prabhat, (Director Big Data Center, NERSC) observes that identifying phenomena in climate data is analogous to commercial vision applications as shown in the following slide from his Intel Developer Conference keynote presentation.

Figure 4: Intuition showing that conventional DNNs could potentially recognize atmospheric phenomena (Image courtesy NERSC)

Prabhat points out that initial supervised training results show that this analogy is correct in that machine learning was able to train and recognize each of three desired atmospheric phenomena with high accuracy.

Figure 5: Initial supervised learning results [v] (Courtesy NERSC).
Researchers from MILA, NERSC and Microsoft teamed up to create[vi] a novel semi-supervised convolutional DNN architecture that was able to do the work of all three individual supervised DNNs at the same time. Essentially, this novel neural network finds the bounding box size and location when it classifies the atmospheric phenomena. Further, the neural network also associates a probability with the classification. The high correspondence between prediction and ground truth are shown in Figure 1. Prabhat notes that refining the size of the bounding box is a work in progress.

Figure 6: Novel semi-supervised learning architecture used to classify atmospheric phenomena and demonstrate petascale training performance on the NERSC Intel Xeon Phi computational nodes (Image courtesy NERSC)

Training DNNs at 15 PF/s and with strong scaling

This climate problem was used in a collaborative effort between Intel, NERSC and Stanford to demonstrate the fastest and most scalable deep-learning training implementation in the world according to the authors of the paper Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data. More specifically, the authors report that a configuration of 9600 self-hosted 1.4GHz Intel Xeon Phi Processor 7250 based nodes achieved a peak rate between 11.73 and 15.07 PF/s and an average sustained performance of 11.41 to 13.47 PF/s.

The following strong scaling plots (below) show that the hybrid approach advocated by Kurth, et. al. scales well to run on the thousands of Cori nodes. Ioannis Mitliagkas (former Postdoctoral scholar at Stanford and currently Assistant Professor at the University of Montreal) emphatically states, “People typically report weak scaling, because strong scaling is hard.” He continues, “For machine learning systems, strong scaling (keeping the total amount of work constant) is more representative of actual performance.”[vii]

Figure 7: Strong scaling results for synchronous and hybrid approaches (batch size = 2048 per synchronous group).


Powerful leadership class supercomputers like the CPU-based Cori supercomputer have made fast, accurate global climate simulations possible. Innovations such as the petascale capable hybrid machine learning technique pioneered by Intel, NERSC and Stanford means those same machines can also train DNNs to evaluate the tens to hundreds of terabytes of data created by these faster and more accurate climate simulations.

About the Author

Rob Farber is a global technology consultant and author with an extensive background in HPC and in developing machine learning technology that he applies at national labs and commercial organizations. Rob can be reached at [email protected].


[ii] ibid

[iii] ibid

[iv] ibid



[vii] The authors point out that weak scaling is easy to achieve! However, it is not representative of true performance as it increases the total batch size as the scale increases. They note that most people who claim to be doing large-scale ML/DL report weak scaling. Strong scaling is more representative of true performance and it is hard to achieve. In strong scaling the batch size used per synchronous group is fixed: this means that no wasted computation happens at large scales. See Ameet Talwalkar’s paper and online tool (Paleo) for a model of DL system performance and good demonstrations on how strong scaling suffers for real systems. In terms of the hardware efficiency, hybrid systems can deliver superior strong scaling (this is what the top plots are showing).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…


How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers


Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow