US Leads Supercomputing with #1, #2 Systems & Petascale Arm

By Tiffany Trader

November 12, 2018

The 31st Supercomputing Conference (SC) – commemorating 30 years since the first Supercomputing in 1988 – kicked off in Dallas yesterday, taking over the Kay Bailey Hutchison Convention Center and much of the surrounding area. That means there’s another Top500 list to dive into and discuss. If you follow the space closely there were no major surprises, yet a close inspection of the list yields interesting findings and a few firsts. The United States, despite continuing to lose ground in system share, had a particularly good showing, nabbing the top two spots and standing up the world’s first petaflops Arm-powered supercomputer.

Starting from the top, DOE CORAL siblings Summit and Sierra have both upped their Linpack scores and are enjoying their number one and two spots. Built by IBM, Nvidia and Mellanox, the supercomputers entered the list six months ago with Summit taking highest honors and Sierra in third. Big sister Summit, installed at Oak Ridge, got a performance upgrade as we’d previously reported it would, climbing from 122.3 to 143.4 petaflops. It follows that Sierra, installed at number three six months ago, would likely get one as well (and it did), stepping from 71.6 to 94.6 petaflops.

Nov 2018 Top 10 – Click to Expand (Source: Top500)

Summit has also had its power efficiency optimized for the latest Linpack lineup, bumping it from 13.89 gigaflops/watts to 14.67 gigaflops/watts. Sierra didn’t include power metrics when it debuted six months ago, but now Livermore is reporting an energy efficiency of 12.72 gigaflops/watts. (We’ll look at what that means for their Green500 rankings in a moment.)

Sierra’s flops fortification was sufficient to knock China’s Sunway TaihuLight supercomputer from second to third place. Installed at the National Supercomputing Center in Wuxi, TaihuLight debuted at the top of the June 2016 listing. It is comprised almost entirely of Chinese-made indigenous computing technologies.

Following in fourth place is China’s other mega-system, the Tianhe-2A (Milky Way-2A), which achieved 61.4 petaflops thanks to an upgrade earlier this year that swapped out 2012-era Intel Xeon Phi coprocessors with proprietary Matrix-2000 accelerators. Before the U.S. debuted Summit and Sierra in June 2018, China had enjoyed a long-running lead atop the list, and claimed both the first and second spots for three list iterations (June 2016  through November 2017).

Piz Daint, a Cray XC50 system installed at the Swiss National Supercomputing Centre (CSCS) in Lugano, Switzerland, moves up one spot into fifth place thanks to an upgrade that increased its Linpack performance from 19.6 to 21.2 petaflops. The boost secures Piz Daint’s place as fastest European HPC system, although it would have maintained that status even without the additional cores (but just barely).

Moving up three spots into sixth position is Trinity, a Cray XC40 system operated by Los Alamos National Laboratory and Sandia National Laboratories. Trinity upped its performance from 14.1 to 20.2 petaflops. It is the only system in the top 10 to employ Intel Xeon Phi processors.

The AI Bridging Cloud Infrastructure (ABCI) deployed at the National Institute of Advanced Industrial Science and Technology (AIST) in Japan has moved down two spots into seventh position with a Linpack mark of 19.9 petaflops. Made by Fujitsu the system includes Xeon Gold processors and Nvidia Tesla V100 GPUs.

SuperMUC-NG at LRZ

Welcomed into the top 10 pack as the lone new entrant is SuperMUC-NG, in sixth position with 19.5 petaflops, provided by more than 305,000 Intel Xeon 8174 cores. This is the new fastest system in Germany, built by Lenovo and installed at the Leibniz Supercomputing Centre (Leibniz-Rechenzentrum) in Garching, near Munich. It is the only system in the top 10 to use Intel’s Omni-Path interconnect.

Boasting 26.9 peak petaflops when it launched (compared to Piz Daint’s 25.3), SuperMUC-NG had a shot at overtaking Piz Daint for title of fastest supercomputer on the European block. However, even if Piz Daint hadn’t have added additional cores and flops, it still would have kept its lead (with 19.59 petaflops versus SuperMUC-NG’s 19.48 petaflops).

Titan, the Cray XK7 supercomputer at Oak Ridge National Laboratory, moves down three spots into ninth place. The long-running U.S. record-holder debuted on the list at number one six years ago. 18,688 AMD Opterons and 18,688 Nvidia K20X GPUs provide Titan with 17.5 petaflops of Linpack goodness.

In tenth place is Sequoia, delivering 17.2 petaflops. An IBM BlueGene/Q supercomputer, Sequoia has been a critical asset of DOE’s Lawrence Livermore National Laboratory since 2011.

There are 153 new systems on the list. Lassen, in 11th place, is one of them. Lassen is an IBM Power9 System (S922LC), installed at Lawrence Livermore National Laboratory. Powered by Nvidia V100s, and networked with dual-rail Mellanox EDR Infiniband, Lassen achieves 15.4 petaflops.

New additions SuperMUC-NG and Lassen mean that NERSC’s Cori supercomputer slips from tenth to twelve position. Cori is a Cray XC40, Intel Phi-based system; it is the primary HPC resource for DOE’s Lawrence Berkeley National Lab. Cori first entered the list at number five two years ago and has maintained its 14.01 Linpack petaflops.

Other notable new entrants are Taiwania 2, Electra and Eagle, ranked at 20 (9 petaflops), 33 (5.4 petaflops) and 35 (4.85 petaflops), respectively. Installed at the Taiwan National Center for High-performance Computing, Taiwania was manufactured by Quanta Computer in collaboration with Taiwan Fixed Network and ASUS Cloud, and consists of Xeon Gold 6154 processors and Nvidia Tesla V100 GPUs. Electra and Eagle are both built by HPE using Xeon Gold processors; the former is located at NASA/Ames Research Center and the latter at National Renewable Energy Laboratory.

Last but not least is notable first-timer Astra, the new Arm-based HPE-built supercomputer, deployed at Sandia National Laboratories. Astra gets the claim to fame of being the first Arm-powered supercomputer to make it onto the Top500. Seeing multiple nations betting on Arm for their exascale targets well before Arm had reached petascale has struck me as risky. As large production systems like Astra in the US, Islambad in the UK and a CEA-run system in France are stood up, Arm server chips will have their proving ground. Astra leveraged 125,328 Marvell Cavium ThunderX2 cores to deliver 1.5 High Peformance Linpack petaflops. It enters the list at number 203.

The entry point for the Top100 has reached 1.97 petaflops and there are now 427 systems with performance greater than a petaflops on the list (up from 272 six months ago).

China-U.S. Standing

China continues to lead in system share, while the U.S. maintains the aggregate performance edge it regained six months ago with the entry of its first two CORAL systems. China now claims 229 systems (45.8 percent of the total), while U.S. share fell has dropped to the lowest ever: 108 systems (21.6 percent). That wide delta in system count is offset by the U.S. having the top two systems and generally operating more powerful systems (and more real HPC systems, as opposed to Web/cloud systems), allowing the U.S. to enjoy a 38 percent performance share, compared to China’s 31 percent. Related to the rise in these non-HPC systems, Gigabit Ethernet ropes together 254 systems. 275 systems on the list are tagged as industry.

Aggregate List Performance, Green500 & HPCG

The 52nd Top500 list holds a combined performance (rMax) of 1.41 exaflops. That is an 18.3 percent increase from six months ago, when the total performance of all 500 systems first crossed the exaflops barrier, amassing 1.22 exaflops of total aggregate performance. The total theoretical peak carried by the newly published list is 2.21 exaflops, up from 1.92 exaflops six months ago.

The Green500 has been integrated into the Top500 reporting process and HPCG is also included in the list now. Summit and Sierra hold the top positions on the HPCG ranking ahead of Japan’s K computer at number three. Newcomer Astra also achieved a notable HPCG result, coming in 36th on that list.

On the Green500, Summit and Sierra achieved a position of three and seven, respectively [with 14.67 gigaflops/watt and 12.72 gigaflops/watt, as reported up above].

The top two Green500 systems are Shoubu system B and DGX Saturn, ranked 374 and 373 on the Top500. Shoubu system B, made by PEZY/Exascalar and located at RIKEN, achieves 17.6 gigaflops/watt; while DGX Saturn, made by Nvidia for Nvidia, delivers 15.1 gigaflops/watt.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This