Nvidia Leads Alpha MLPerf Benchmarking Round

By Tiffany Trader

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Google and Intel. Of the seven benchmarks encompassed in version v0.5 of the would-be benchmarking standard, Nvidia announced that it captured the lead spot in six. Separately, Google (which led the creation of the benchmark) said results show Google Cloud “offers the most accessible scale for machine learning training.”

MLPerf supporting companies (as of Dec. 12, 2018) – click-to-enlarge

As HPCwire reported in May, MLPerf is an emerging AI benchmarking suite “for measuring the speed of machine learning software and hardware.” Started by a small group from academia and industry–including Google, Baidu, Intel, AMD, Harvard and Stanford–the project has grown considerably in the last half-year. At last count, the website lists 31 supporting companies: the aforementioned Google, Intel, AMD and Baidu as well as ARM, Nvidia, Cray, Cisco, Microsoft and others (but not IBM or Amazon).

According to the consortium, the training benchmark is defined by a dataset and quality target and also provides a reference implementation for each benchmark that uses a specific model. The following table summarizes the seven benchmarks in version v0.5 of the suite, which spans five categories (image classification, object detection, translation, recommendation and reinforcement learning). Time to train is the main performance metric.

MLPerf v0.5 benchmark suite (Source: MLPerf)

Nvidia revealed today that its platforms outperformed the competition by up to 5.3x (faster time to results), showing leading single-node and at-scale results for six of the workloads. Nvidia opted not to submit for reinforcement learning network because, as Ian Buck, vice president and general manager of accelerated computing at Nvidia, explained in an advance press briefing, it is for the most part CPU-based and does not have meaningful acceleration in its current form.

Nvidia submitted for all of the six accelerated benchmarks in two categories — single node (testing up to 16 V100 GPUs in the DGX-2H platform) and at-scale (testing in various configurations, up to 640 GPUs).

In a blog post published today, Nvidia stated that “a single DGX-2 node can complete many of these workloads in under twenty minutes. And in the case of our at-scale submission, we’re completing these tasks in under seven minutes in all but one of the tests.”

Test Platform: DGX-2H – Dual-Socket Xeon Platinum 8174, 1.5TB system RAM, 16 x 32 GB Tesla V100 SXM-3 GPUs connected via NVSwitch (Source: Nvidia, see endnotes for details)
Test Platform: For Image Classification and Translation (non-recurrent), DGX-1V Cluster. For Object Detection (Heavy Weight) and Object Detection (Light Weight), Translation (recurrent) DGX-2H Cluster. Each DGX-1V, Dual-Socket Xeon E5- 2698 V4, 512GB system RAM, 8 x 16 GB Tesla V100 SXM-2 GPUs. Each DGX-2H, Dual-Socket Xeon Platinum 8174, 1.5TB system RAM, 16 x 32 GB Tesla V100 SXM-3 GPUs connected via NVSwitch. (Source: Nvidia, see endnotes for details)

While there are faster ResNet50 competitions out there, they aren’t under the standard MLPerf guidelines, Nvidia told us.

Source: Nvidia (Dec. 10, 2018)

“By improving and delivering on the full-stack optimization and our performance at scale, we decrease training times, which makes research and deployment of AI faster and we improve the cost efficiency,” said Ian Buck in the press briefing. “If I take a DGX Station and look at its value over four years, it’s roughly $1.50/hr, so a little over $6 to train a ResNet50.” Buck added that Titan RTX, announced last week with a list price of $2,499, comes out to just over $2.00 to train a single ResNet50.

Speaking to the value of the “industry’s first comprehensive AI benchmark” and what that means for customers, Buck stated: “Nvidia is no stranger to benchmarks; we certainly have them in the graphics space, we have them in the supercomputing space and we now have them as well in the AI world. Providing a common benchmark, a common set of rules as long as it’s appropriately governed can provide perspective to customers and the rest of the community on the state of everyone’s solution. It also provides a nice common platform for people to innovate, to measure innovation and help companies move the ball forward in improving the performance.”

Google also took time to promote its results today in a blog post, claiming Google Cloud “offers the most accessible scale for machine learning training” and “a 19% TPU performance advantage on a chip-to-chip basis.”

The results show Google Cloud’s TPUs (Tensor Processing Units) and TPU Pods as leading systems for training machine learning models at scale, based on competitive performance across several MLPerf tests,” wrote Urs Hölzle, Senior Vice President of Technical Infrastructure, Google.

“For data scientists, ML practitioners, and researchers, building on-premise GPU clusters for training is capital-intensive and time-consuming—it’s much simpler to access both GPU and TPU infrastructure on Google Cloud,” said Hölzle.

This graphic from Google compares absolute training times for Nvidia’s DGX-2 machine, containing 16 V100 GPUs, with results using 1/64th of a TPU v3 Pod (16 TPU v3 chips used for training and 4 TPU v2 chips used for evaluation). The three benchmarks shown are image classification (ResNet-50), object detection (SSD), and neural machine translation (NMT).

Training time comparison between 1/64th of a TPU v3 Pod (16 TPU v3 chips used for training, plus four separate Cloud TPU v2 chips used for evaluation) and an Nvidia DGX-2 (16 V100 GPUs) (Source: Google Cloud)

The inaugural MLPerf testing only had three submitters: Nvidia, Google and Intel. All submitted for the closed division, which compares hardware platforms or software frameworks on an “apples-to-apples” basis. There were no submissions for the open division, which allows any ML approach that can reach the target quality and is intended to foster innovation. See results here: https://mlperf.org/results/

Noted on its Github page, “MLPerf v0.5.0 is the ‘alpha’ release of an agile benchmark, and the benchmark is still evolving based on feedback from the community.” Changes under consideration include “raising target quality, adopting a standard batch-size-to-hyperparameter table, scaling up some benchmarks (especially recommendation), and adding new benchmarks.” The current suite is limited to training workloads, but according to Nvidia, there are plans to add inference-focused benchmarks. The consortium is working on releasing interim versions of the suite (v0.5.1 and v0.5.2) in the first half of 2019 with a full version 1.0 release planned for the third quarter of 2019.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NIST/Xanadu Researchers Report Photonic Quantum Computing Advance

March 3, 2021

Researchers from the National Institute of Standards and Technology (NIST) and Xanadu, a young Canada-based quantum computing company, have reported developing a full-stack, photonic quantum computer able to carry out th Read more…

By John Russell

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and even to this day, the largest climate models are heavily con Read more…

By Oliver Peckham

Deloitte Outfits New AI Computing Center with Nvidia DGX Gear

March 3, 2021

With AI use continuing to grow in adoption throughout enterprise IT, Deloitte is creating a new Deloitte Center for AI Computing to advise its customers, explain the technology and help them use it in their ongoing busin Read more…

By Todd R. Weiss

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2020) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective immediately. Hotard replaces long-time Cray exec Pete Ungaro Read more…

By Tiffany Trader

ORNL’s Jeffrey Vetter on How IRIS Runtime will Help Deal with Extreme Heterogeneity

March 2, 2021

Jeffery Vetter is a familiar figure in HPC. Last year he became one of the new section heads in a reorganization at Oak Ridge National Laboratory. He had been founding director of ORNL's Future Technologies Group which i Read more…

By John Russell

AWS Solution Channel

Moderna Accelerates COVID-19 Vaccine Development on AWS

Marcello Damiani, Chief Digital and Operational Excellence Officer at Moderna, joins Todd Weatherby, Vice President of AWS Professional Services Worldwide, for a discussion on developing Moderna’s COVID-19 vaccine, scaling systems to enable global distribution, and leveraging cloud technologies to accelerate processes. Read more…

HPC Career Notes: March 2021 Edition

March 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

By Mariana Iriarte

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

By Oliver Peckham

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2020) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

By Tiffany Trader

ORNL’s Jeffrey Vetter on How IRIS Runtime will Help Deal with Extreme Heterogeneity

March 2, 2021

Jeffery Vetter is a familiar figure in HPC. Last year he became one of the new section heads in a reorganization at Oak Ridge National Laboratory. He had been f Read more…

By John Russell

HPC Career Notes: March 2021 Edition

March 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it Read more…

By Mariana Iriarte

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

By Oliver Peckham

Japan to Debut Integrated Fujitsu HPC/AI Supercomputer This Spring

February 25, 2021

The integrated Fujitsu HPC/AI Supercomputer, Wisteria, is coming to Japan this spring. The University of Tokyo is preparing to deploy a heterogeneous computing Read more…

By Tiffany Trader

Xilinx Launches Alveo SN1000 SmartNIC

February 24, 2021

FPGA vendor Xilinx has debuted its latest SmartNIC model, the Alveo SN1000, with integrated “composability” features that allow enterprise users to add their own custom networking functions to supplement its built-in networking. By providing deep flexibility... Read more…

By Todd R. Weiss

ASF Keynotes Showcase How HPC and Big Data Have Pervaded the Pandemic

February 24, 2021

Last Thursday, a range of experts joined the Advanced Scale Forum (ASF) in a rapid-fire roundtable to discuss how advanced technologies have transformed the way humanity responded to the COVID-19 pandemic in indelible ways. The roundtable, held near the one-year mark of the first... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Intel Teases Ice Lake-SP, Shows Competitive Benchmarking

November 17, 2020

At SC20 this week, Intel teased its forthcoming third-generation Xeon "Ice Lake-SP" server processor, claiming competitive benchmarking results against AMD's second-generation Epyc "Rome" processor. Ice Lake-SP, Intel's first server processor with 10nm technology... Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

By Tiffany Trader

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

By Oliver Peckham

It’s Fugaku vs. COVID-19: How the World’s Top Supercomputer Is Shaping Our New Normal

November 9, 2020

Fugaku is currently the most powerful publicly ranked supercomputer in the world – but we weren’t supposed to have it yet. The supercomputer, situated at Japan’s Riken scientific research institute, was scheduled to come online in 2021. When the pandemic struck... Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire