CSCS’s New Supercomputer, Alps, Is (Much) More Than a Simple Piz Daint Replacement

By Simone Ulmer

March 25, 2021

Editor’s Note: Standing up a leading-edge supercomputer is always exciting and challenging. Doing so during a pandemic while sourcing from an overseas manufacturer is even harder. Just shipping subsystems to where they are needed is a complicated chore prone to delay. The Swiss National Supercomputer Center (CSCS) is undertaking just such a project; it is replacing its flagship 25-petaflops supercomputer, Piz Daint, a Cray XC50 system, with a new system – named Alps – that is being provided by HPE (which acquired Cray).

Alps is based on Cray/HPE’s Shasta architecture and, among other things, will be implemented with a software-defined strategy encompassing all of CSCS, essentially creating a new single infrastructure. Quite a few details of the final infrastructure remain to be determined. Currently the Alps is scheduled to be completed in the spring of 2023. In this fascinating interview with CSCS Director Thomas Schulthess, he not only discusses many of the technical goals for the new machine but also talks about how they reflect CSCS’s evolving mission and self-identity.

“We are retrofitting the whole computer centre in several expansion phases,” says Schulthess.

Presented here is the full interview which appeared on the ETH Zurich and CSCS websites.

The flagship supercomputer of the CSCS, “Piz Daint”, needs to be replaced. Installation of the successor computer, “Alps”, is taking place in three phases and will be completed in 2023. CSCS Director Thomas Schulthess explains in an interview why the new computer is so special.

ETH News: Last year, the first phase of installing the new supercomputer “Alps”, the successor to “Piz Daint”, started. How has the work been going so far during the Corona crisis?
Thomas Schulthess:
 We had to change our approach, but we were more or less able to keep to the schedule, even though there were a few minor delays. During the first lockdown, it was not possible to bring the first four cabinets of the new computer from the USA to Switzerland as planned. But the manufacturing company HPE still managed to build the hardware, so we had access to our machines in the US in June and July and were able to work on them. Therefore, the acceptance of the computer cabinets in Lugano in autumn went off without any major problems.

The expansion of “Alps” will last until spring 2023. Why is it taking so long?
Because the product we want is not fully developed yet. The central element of the new computer is the Cray Shasta software stack, which we participated in developing with other data centres. This software stack is now operational, but it will take another two years until the desired computer infrastructure will be completely ready.

Piz Daint, CSCS’s current top supercomputer

What is so special about the new computer infrastructure?
With the Cray Shasta software stack, we have opted for a software-​defined infrastructure. That is the decisive point for me — without this software stack, the new machine would lose a lot of its value for me. “Alps” would still be the best variant in high-​performance computing that will be available on the market in the foreseeable future, but we clearly have higher goals that we would not achieve without the improved infrastructure. That would be a big disappointment.

What does that mean exactly?
At CSCS, we primarily operate a research infrastructure, which we make available to researchers as a User Lab, among other things. That is our core mission. However, in contrast to other research infrastructures, such as the SwissFEL at PSI, we do practically no research of our own on our instruments. We therefore have to find a creative way to expand our own expertise in order to be able to further develop the research infrastructure. Hence we collaborate closely with researchers from Swiss universities.

So, the CSCS does not see itself primarily as a service provider?
It does, but not in the sense of an IT company that merely operates computers in order to be able to offer computing time. For us, the computer is the means to an end, and the end is the research infrastructure, which we build and develop together with researchers with funding from the ETH Board; the operation costs are covered by contributions from ETH Zurich. We now want to further develop this research infrastructure with a program with the code name “Kathmandu”.

What exactly is this Kathmandu program about?
The Kathmandu program is an important part of the new procurement mentioned above. We are not simply procuring a new computer that will be integrated into the unchanged computer centre — we are retrofitting the computer centre in several expansion phases. Today, we operate different computer systems for different needs at CSCS, but in the future there will be only one infrastructure. For MeteoSwiss, for example, we have operated a dedicated computer up to now. In the future, MeteoSwiss will compute on one or more partitions of this new infrastructure.

What is the advantage of this solution?
At CSCS, we have always offered various services for researchers, but the system architecture was not service-​oriented. Therefore, we always had to expend a lot of human resources to define these services according to the requirements of the users and the architecture of the machines. This process is now easier because we have a software-​defined infrastructure.

Since 1 October 2008 Thomas Schulthess has been Director of the Swiss National Supercomputing Centre (CSCS) at Lugano. As CSCS director, he is also full Professor of computational physics at ETH Zurich. (Photograph: CSCS / A. Della Bella)

What does a software-​defined infrastructure mean?
If we do everything right together with HPE, our hardware will be very flexible. This means that, in the future, we will define which services we offer via the software, no longer via the hardware. To do this, we combine so-​called microservices. In this way, we define the partitions for the various users, which we then make available to them via standardised interfaces. These can be virtual ad-​hoc clusters for individual users, but also predefined clusters that research infrastructures such as the PSI put together with us and then operate themselves. We can also create data platforms with the microservices. For example, we are planning to develop a so-​called domain platform for weather and climate simulations with various partners.

You explicitly mention the field of weather and climate. Will “Alps” also be useful for other fields of science?
Yes, with “Alps” we are developing a “general purpose supercomputer”. Our goals do not stop at climate simulations at all. However, these are an extremely good means to an end, since the problem is very clearly formulated in climate simulations. In addition, they represent all the requirements of a modern supercomputing and data infrastructure. We respond to these very specific requirements with an infrastructure that we can then also offer to other research areas.

What does this change for the users of the User Lab?
Previous users of “Piz Daint” will be able to use the new system without any adjustments. It should even be easier for them. We will also further develop the HPC platform for the User Lab as a virtual area within the computer system. This will make the resources more powerful, and they will cover larger parts of the workflow. The scientists will not only be able to carry out simulations, but also pre-​process or post-​process their data. This makes the whole workflow more efficient for them.

So not much will change for the users. What does the conversion mean for the staff at CSCS?
The new strategy will require fundamentally rethinking certain areas. The engineers providing system and user support will have to adjust, for example, because our previous computers that we operated in addition to “Piz Daint” will be virtual clusters in the future. Some staff will develop and maintain microservices, while others will combine these microservices into virtual clusters or applications that are then made available as services to researchers.

Great efforts are currently being made in Europe to further advance high-​performance computing. This includes, in particular, the EU’s Pre-​Exascale Initiative. How is CSCS involved in these efforts?
CSCS is a member of the LUMI consortium, which is part of the Pre-​Exascale Initiative. The acronym stands for “Large Unified Modern Infrastructure”. This is a new pre-​exascale supercomputer that will be located in Finland. The LUMI consortium has ten member states, including the Scandinavian countries, where the conditions for producing cheap, CO2-​free electricity and cooling the computers are optimal.

Why is this aspect so important?
This can be explained using climate research as an example. Our goal is to develop climate models that can map convective clouds such as thunderclouds. “Alps”, the successor to “Piz Daint”, will have a connected load of 5 to 10 megawatts. However, a computer infrastructure that is to productively deliver the above-​mentioned resolution for climate science must have 50 times the power. Since we can no longer achieve performance gains through Moore’s Law, we need a machine 50 times larger than “Alps”, which will also increase energy consumption accordingly. It therefore makes sense to build such a computer infrastructure where the required energy can be generated cheaply and in an environmentally friendly way. We do not have such locations in Central Europe, but we do in Northern Europe.

What is the timetable for LUMI?
The LUMI computer is also being built by HPE and is scheduled to reach the pre-​exascale performance class in autumn 2021 before going into operation in spring 2022. Our “Alps” system will be installed one and a half years later, at the end of 2022, and will replace “Piz Daint” completely by April 2023. But our new services will already be available this spring and will be expanded later this year during the first expansion phases; and we will try to also integrate LUMI. We will then have a very strong overall infrastructure available, running on two sub-​infrastructures, “Alps” and LUMI. We will move faster in this direction than others in Europe.

Does this mean that Swiss computing resources will be relocated abroad in the future?
No, but we must be realistic: We will never operate computers of 100 MW or more in Switzerland. We have to focus the local computing resources in Switzerland on innovative pilot projects and integrate them into a larger network for production. Our intention is to develop software platforms that run on both infrastructures so that users practically don’t notice whether their application is running in Finland or in Lugano.

CSCS Description
The Swiss National Supercomputing Centre (CSCS) develops and provides the infrastructure and know-​how in the field of high-​performance computing (HPC) to solve important scientific and societal problems. It implements the national strategy for high-​performance computing and networks (HPCN), which was passed by the Swiss parliament in 2009. Since 2011, CSCS has had a dedicated User Lab for supercomputing, and it is part of the Swiss Research Infrastructure Roadmap. Since 2020, it has also been a member of the European LUMI consortium, which is building a European supercomputer of the pre-​exascale performance class.

Website CSCS

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the University of Chicago, leads Chameleon. This innovative projec Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Leading Solution Providers

Contributors

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire