SC21 Panel on Programming Models – Tackling Data Movement, DSLs, More

By John Russell

January 6, 2022

How will programming future systems differ from current practice? This is an ever-present question in computing. Yet it has, perhaps, never been more pressing given the rise of heterogeneous architectures and diverse hardware, the steady incorporation of AI technology, and the proliferation of new programming languages and models.

At SC21, a distinguished panel tackled this broad question. Higher levels of abstraction, a clearer focus on data movement – not compute functions – and the rise of domain-specific languages as important tools were among the dominant points of discussion, which touched on topics as diverse programming Cerebras’s wafer-scale chip to FPGAs.

Moderated by Hal Finkel (DOE), the panelists included Kathy Yelick (UC Berkeley), Saman Amarasinghe (MIT), Torsten Hoefler (ETH Zürich), Maya Gokhale (LLBNL) and Justin Gottschlich (Intel). Capturing the full discussion is too daunting, but each panelist made an opening statement that captures (at least directionally) much of their thinking. Presented here are brief portions (lightly edited) of panelists’ opening remarks.

Kathy Yelick. Image courtesy of Berkeley Lab Computing Sciences.

Yelick, who just assumed her new role as vice chancellor of research at LBNL, kicked off the panel saying, “[In] scientific computing, in general, I think we should think about how people are programming at much higher level of abstraction than we’re used to. I think if you look at machine learning, and the packages that people have built for machine learning, they’ve really shown that you can, with a lot of work in terms of how you implement some of those underlying algorithms, get very good performance out of those.

“That opens up HPC-type of access to a much broader community of people if they can program at the level of something like TensorFlow. And I’d like people to also think a little bit about systems like Julia and Jupyter notebooks as really the interface to the computers, rather than thinking about programming and languages based on things like C/C++ or Fortran. So really, I’m going to be advocating for a much higher level of abstraction, which is not to say that some of us won’t still be programming at a much lower level.”

Next up was Amarasinghe, who leads the compiler research group in MIT’s Computer Science & Artificial Intelligence Laboratory (CSAIL). A leader in the field of high-performance domain-specific languages, Amarasinghe’s group developed the Halide, TACO, Simit, and many other domain-specific languages and compilers,

Saman Amarasinghe, MIT

“If you think about domain-specific languages, [it’s] not too much of a stretch – even if you say you are a C programmer, or Fortran programmer or Python programmer – to say nobody writes loops and arrays and low level things in these languages. We all use libraries. All the systems are based on libraries and that means you’re already programming in higher level abstraction with one caveat. These libraries don’t have understanding of how the entire thing is connected together. So, when you call a library function, it’s a standalone thing; it will do what’s asked and return,” he said.

“What a domain-specific language or domain-specific compiler does is, it can figure out the control flow between these library calls, understand how these things get stitched together and use that to begin to optimize performance. This is especially important now and for the future, because memory systems and data movement are becoming a really important issue,” said Amarasinghe.

Perhaps the most forceful champion for focusing on data movement in future programming development was Hoefler, who directs the Scalable Parallel Computing Laboratory (SPCL) at ETH Zurich. He argued counting FLOPS, as is done in ranking the Top500, misses the point in modern computing.

Commenting on the use of new large models such as GPT-3, he said, “Many companies are spending 10s of millions of dollars to train these models, and these are real HPC problems. They are the largest models people have trained [and] very much [what] we care about. We actually analyzed the workload a little bit more in detail. We found that the 99.8 percent of the floating-point operations in this workload is actually comprised of Tensor contractions [and] Tensor contractions are all expressed as matrix multiplication.

Torsten Hoefler, ETH Zurich

“So, this is wonderful, isn’t it? 99.8 percent of this workload is matrix multiplication. But if you actually look at the remaining 0.2 percent of operations in this workload, [it] turns out those are taking about 40 percent of the runtime. [That’s] because these Tensor contractions have been super highly-optimized over the years. The problem now [that] dominates everything else is data movement. We did some optimizations that I don’t want to go into detail about that show that you can actually speed this up quite significantly, and you can save millions of dollars by just looking at data movement,” said Hoefler.

Gottschlich, who is a principal AI scientist at Intel Labs and the director and founder of the machine programming research group at Intel, noted how Intel’s perspective on programing models has changed.

“When I joined back in 2010, Intel was very much a monolithic computing company, it was just a CPU. As I suspect everyone in the audience knows, we now consider ourselves to be very heterogeneous,” he said. “One of the core challenges we see today is not so much in the compute, but in the data movement. So, I just wanted to quickly acknowledge that I think the data movement, and figuring out how to deal with that, especially as we grow into deeper stochastic systems that tend to be improving their accuracy, as you have more IID data (independent and identically distributed data), that it becomes even more important that we figure out how to handle that that data movement problem.”

Justin Gottschlich, Intel

“Back in 2018, we published this paper, actually jointly with Saman (Amarasinghe) and some others, on the three pillars of machine programming. Machine programming is principally this idea that we are going to try to automate the development of software, and a byproduct of that is the automation of development of hardware given that much of hardware is developed through software. The three pillars are intention, invention and adaptation. Intention is principally concerned with trying to identify novel ways or improve the existing ways for programmers to specify their ideas to the machine. So, going back to, I think, both Kathy and Saman’s comments about higher order abstractions, and DSLs. In fact, I fully agree with this. I think that as we move forward, I suspect that to get outstanding performance, we really need to have this separation of intention from invention and adaptation. Once the intention is understood by the machine, then we can start to invent the algorithms and data structures that are necessary to fulfill that intention.”

Last to deliver intro remarks was Gokhale, distinguished member of technical staff at LLNL and an expert in reconfigurable computing and data intensive architectures.

Maya Gokhale

“I feel as if we’re in a fix right now with a fusion of programming models and it’s because of scaling laws, which we all know very well, between the feature size and the power. What we’ve done is build specialized widgets, that do a smaller thing, but do it very well rather than a general-purpose thing. That is a cause of a lot of problems. [It’s] one factor that is leading us to a lot of new ideas in programming models, this idea of specialization and putting heterogeneous pieces together,” said Gokhale.

“To me, the future is system-on-chip (OSC) like environments. So, heterogeneous compute models, data and or control-driven, tightly or loosely-coupled. [For example,] if you’ve worked for Apple or worked on cell phones, that SOC environment. I have a background in reconfigurable computing with FPGAs that is the combination of SOC-like environment and higher level programming. It’s a difficult environment to work in, but I see that’s where we’re going. On the other side, I see workflows for programming, [with] model interfacing and mapping. [Often] you think of your favorite DSL; it’s just so elegant and so mathematical. But it has to talk to other pieces of things and how do you make it do that? How do you interoperate? [L]arge HPC workflows have embodied some of those ideas of being able to interface with [DSLs],” she said.

A rich discussion followed the introductory comments and the SC21 video was still posted as of this writing and accessible by SC21 registrants.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will b Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six thousand miles away in Alaska, caused tsunamis across the entir Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Researchers Achieve 99 Percent Quantum Accuracy with Silicon-Embedded Qubits 

January 20, 2022

Researchers in Australia and the U.S. have made exciting headway in the quantum computing arms race. A multi-institutional team including the University of New South Wales and Sandia National Laboratory announced that th Read more…

Trio of Supercomputers Powers Estimate of Carbon in Earth’s Outer Core

January 20, 2022

Carbon is one of the essential building blocks of life on Earth, and it—along with hydrogen, nitrogen and oxygen—is one of the key elements researchers look for when they search for habitable planets and work to unde Read more…

AWS Solution Channel

shutterstock 718231072

Accelerating drug discovery with Amazon EC2 Spot Instances

This post was contributed by Cristian Măgherușan-Stanciu, Sr. Specialist Solution Architect, EC2 Spot, with contributions from Cristian Kniep, Sr. Developer Advocate for HPC and AWS Batch at AWS, Carlos Manzanedo Rueda, Principal Solutions Architect, EC2 Spot at AWS, Ludvig Nordstrom, Principal Solutions Architect at AWS, Vytautas Gapsys, project group leader at the Max Planck Institute for Biophysical Chemistry, and Carsten Kutzner, staff scientist at the Max Planck Institute for Biophysical Chemistry. Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called t Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six tho Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire