Researchers Invent New Way to Stretch Diamond for Better Quantum Bits

November 30, 2023

Nov. 30, 2023 — A future quantum network may become less of a stretch thanks to researchers at the University of Chicago, Argonne National Laboratory and Cambridge University.

Breakthrough by UChicago, Argonne researchers could help pave way for quantum infrastructure. Illustration by Peter Allen.

A team of researchers announced a breakthrough in quantum network engineering: By “stretching” thin films of diamond, they created quantum bits that can operate with significantly reduced equipment and expense. The change also makes the bits easier to control.

The researchers hope the findings, published Nov. 29 in Physical Review X, can make future quantum networks more feasible.

“This technique lets you dramatically raise the operating temperature of these systems, to the point where it’s much less resource-intensive to operate them,” said Alex High, assistant professor with the Pritzker School of Molecular Engineering, whose lab led the study.

Diamond Dilation 

Quantum bits, or qubits, have unique properties that make them of interest to scientists searching for the future of computing networks—for example, they could be made virtually impervious to hacking attempts. But there are significant challenges to work out before it could become a widespread, everyday technology.

One of the chief issues lies within the “nodes” that would relay information along a quantum network. The qubits that make up these nodes are very sensitive to heat and vibrations, so scientists must cool them down to extremely low temperatures to work.

“Most qubits today require a special fridge the size of a room and a team of highly trained people to run it, so if you’re picturing an industrial quantum network where you’d have to build one every five or 10 kilometers, now you’re talking about quite a bit of infrastructure and labor,” explained High.

High’s lab worked with researchers from Argonne National Laboratory, a U.S. Department of Energy national lab affiliated with UChicago, to experiment with the materials these qubits are made from to see if they could improve the technology.

One of the most promising types of qubits is made from diamonds. Known as Group IV color centers, these qubits are known for their ability to maintain quantum entanglement for relatively long periods, but to do so they must be cooled down to just a smidge above absolute zero.

The team wanted to tinker with the structure of the material to see what improvements they could make—a difficult task given how hard diamonds are. But the scientists found that they could “stretch” out the diamond at a molecular level if they laid a thin film of diamond over hot glass. As the glass cools, it shrinks at a slower rate than the diamond, slightly stretching the diamond’s atomic structure—like pavement expands or contracts as the earth cools or warms beneath it, High explained.

Big Impact 

This stretching, though it only moves the atoms apart an infinitesimal amount, has a dramatic effect on how the material behaves.

First, the qubits could now hold their coherence at temperatures up to 4 Kelvin (or -452°F). That’s still very cold, but it can be achieved with less specialized equipment. “It’s an order of magnitude difference in infrastructure and operating cost,” High said.

Secondly, the change also makes it possible to control the qubits with microwaves. Previous versions had to use light in the optical wavelength to enter information and manipulate the system, which introduced noise and meant the reliability wasn’t perfect. By using the new system and the microwaves, however, the fidelity went up to 99%.

It’s unusual to see improvements in both these areas simultaneously, explained Xinghan Guo, a Ph.D. student in physics in High’s lab and first author on the paper.

“Usually if a system has a longer coherence lifetime, it’s because it’s good at ‘ignoring’ outside interference—which means it is harder to control, because it’s resisting that interference,” he said. “It’s very exciting that by making a very fundamental innovation with materials science, we were able to bridge this dilemma.”

“By understanding the physics at play for Group IV color centers in diamond, we successfully tailored their properties to the needs of quantum applications,” said Argonne National Laboratory scientist Benjamin Pingault, also a co-author on the study. “With the combination of prolonged coherent time and feasible quantum control via microwaves, the path to developing diamond-based devices for quantum networks is clear for tin vacancy centres,” added Mete Atature, a professor of physics with Cambridge University and a co-author on the study.

The researchers used the Pritzker Nanofabrication Facility and Materials Research Science and Engineering Center at UChicago.

Other study authors included Zixi Li, Benchen Huang, Yu Jin, Tianle Lu, Prof. Giulia Galli and Prof. David Awschalom with the University of Chicago; Nazar Delegan and Benjamin Pingault with Argonne National Laboratory; and Alexander Stramma (co-first author), William Roth, Ryan Parker, Jesus Arjona Martinez, Noah Shofer, Cathryn Michales, Carola Purser, Martin Appel, Evgeny Alexeev, and Andrea Ferrari with the University of Cambridge.

Citation: “Microwave-based quantum control and coherence protection of tin-vacancy spin qubits in a strain-tuned diamond membrane heterostructure.” Guo et al, Physical Review X, Nov. 29, 2023.

Funding: Air Force Office of Scientific Research, U.S. Department of Energy Q-NEXT National Quantum Information Science Research Center, ERC Advanced Grant PEDASTAL, EU Quantum Flagship, National Science Foundation, EPSRC/NQIT, General Sir John Monash Foundation and G-research, Winton Programme and EPSRC DTP, EU Horizon 2020 Marie Sklodowska-Curie Grant.


Source: Louise Lerner, UChicago

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then found to be quite useful in large numbers by HPC practition Read more…

Intel Labs Fights Silent Data Corruption with Computational Storage

May 30, 2024

Artificial Intelligence (AI) Large Language Models and other forms of Deep Learning already require enormous amounts of training data. The data volumes are expected to grow as more organizations implement AI. This situat Read more…

Natcast/NSTC Issues Roadmap to Implement CHIPS and Science Act

May 29, 2024

Yesterday, CHIPS for America and Natcast, the operator of the National Semiconductor Technology Center (NSTC), released a roadmap of early steps for implementing portions of the ambitious $5 billion program. Natcast is t Read more…

Scientists Use GenAI to Uncover New Insights in Materials Science

May 29, 2024

With the help of generative AI, researchers from MIT and the University of Basel in Switzerland have developed a new machine-learning framework that can help uncover new insights about materials science. The findings of Read more…

Microsoft’s ARM-based CPU Cobalt will Support Windows 11 in the Cloud

May 29, 2024

Microsoft's ARM-based CPU, called Cobalt, is now available in the cloud for public consumption. Cobalt is Microsoft's first homegrown CPU, which was first announced six months ago. The cloud-based Cobalt VMs will support Read more…

2024 Winter Classic Finale! Gala Awards Ceremony

May 28, 2024

We wrapped up the competition with our traditional Gala Awards Ceremony. This was an exciting show, given that only 40 points or so separated first place from fifth place after the Google GROMACS Challenge and heading in Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Intel Labs Fights Silent Data Corruption with Computational Storage

May 30, 2024

Artificial Intelligence (AI) Large Language Models and other forms of Deep Learning already require enormous amounts of training data. The data volumes are expe Read more…

Scientists Use GenAI to Uncover New Insights in Materials Science

May 29, 2024

With the help of generative AI, researchers from MIT and the University of Basel in Switzerland have developed a new machine-learning framework that can help un Read more…

watsonx

IBM Makes a Push Towards Open-Source Services, Announces New watsonx Updates

May 28, 2024

Today, IBM declared that it is releasing a number of noteworthy changes to its watsonx platform, with the goal of increasing the openness, affordability, and fl Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storag Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC eve Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire