NERSC Cori Shows the World How Many-Cores for the Masses Works

By Rob Farber

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others.

“We have about 6,000 users – with 700 different codes – who are doing research across all fields of interest to the Office of Science and we support them all,” said Richard Gerber, NERSC HPC department head and senior science advisor. “That means that all our users and all their codes have to run, and run well, on our systems. One of our challenges is to get our entire workload to run efficiently and effectively on next-generation supercomputers. This goal has become known as ‘Many core for the masses,’ and that’s what we will be spending a lot of time working on in the upcoming year.”

By definition then, many-cores for the masses at NERSC includes getting all the Office of Science applications running on NERSC’s new Cori supercomputer with 9,300 Intel Xeon Phi processors (formerly known as Knights Landing or KNL) and 1,900 Intel Xeon compute nodes.

“Cori is NERSC’s first manycore system and is on the path to exascale,” Gerber continued. “In particular it’s the first system where single-thread performance may be lower than single-thread performance on the previous system. This presents a real challenge for some users.” The Cori supercomputer also presents a deeper memory/storage hierarchy from the Intel Xeon Phi processor on-package MCDRAM, to DDR, to a burst buffer flash storage layer and all the way through to the Lustre file system.

In preparing for Cori over the past two years, the NERSC team launched NESAP (the NERSC Exascale Science Applications Program), which is a collaborative effort where NERSC partners with code teams, library and tools developers, Intel, Cray and the HPC community to prepare for the Cori many-core architecture. Twenty projects were selected for NESAP based on computational and scientific reviews by NERSC and other DOE staff. These projects represent about half of the runtime hours utilized on the NERSC supercomputers.

Figure 1: NESAP activities

The idea is to provide training for staff and postdocs and apply the lessons learned to the broad NERSC user community. These lessons are also widely applicable to the general Intel Xeon and Intel Xeon Phi processors user community. “As we learn things, a big part of our strategy is to take that knowledge and spread it out to the community – the community of our 6,000 users but also the worldwide community,” Gerber pointed out in the NERSC talk at the recent Intel HPC Developer conference, Many Cores for the Masses: Lessons Learned from Application Readiness Efforts at NERSC for the Knights Landing Based Cori System.

Jack Deslippe, who leads the NESAP effort and the NERSC Application Performance Group, reiterated the point that, “Cori represents the first machine that NERSC has procured where doing nothing means that a user’s code can actually run slower on the new system node-per-node.” That is why the NESAP program is an “all hands on deck” effort to work at a much deeper level with user code than the NERSC has done before. “This effort has touched every group at NERSC,” he said, “and has created a level of collaboration with Cray and Intel engineers on apps that has never occurred at the center before.”

Optimization for the Masses

When talking to scientists and users, the NERSC team likens the optimization process to that of an ant farm — an analogy that has become popular, no doubt, due to its silliness. Deslippe noted in an SC16 talk “This sort of out-of-the-box thinking that gives you a promotion at Berkeley,” which garnered a hearty laugh from the audience. The truth as reflected by the ant hill model (shown below) is that optimizing code is not always a straightforward process. In particular, Deslippe observed that, “it is easy to get lost in the weeds” – especially with Intel Xeon Phi processors due to the wealth of new architectural features on these devices that a programmer might want to target.

Figure 2: How to talk to the masses about optimizing codes for Cori

Profiling your code is, “like a lawnmower that constantly finds and knocks down the next tallest blade of grass” he said, an analogy to optimizing the next section of code that consumes the greatest amount of runtime. The programmers then take the code section away for investigation. In order to bring order to the ant farm, NERSC has employed the use of the roofline model, which tells the programmer not only how much they are improving the code according to an absolute measure of performance (shown on the y-axis below), but it also tells them which architectural features might help. The positions of code performance relative to the ceilings in the model show where the potential performance gains can be achieved be it via vectorization (AVX), code restructuring via Instruction Level Parallelism (ILP) or focusing on efficient use of the High Bandwidth memory (HBM).

Figure 3: The roofline model is a valuable optimization tool

The ability to easily collect accurate roofline performance data is the result of collaboration between Intel and NERSC staff. (See http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity for more information.) The NERSC team is actively working with Intel on the co-design of performance tools in the Intel Advisor utility that now includes the roofline model. Early access can be found here.

Early CORI Intel Xeon Phi processor single node results

Early single Intel Xeon Phi processor node results show excellent speedups on the NESAP codes with a maximum speedup of 13x for the BerkeleyGW package, a set of computer codes written at Berkeley that calculate the quasiparticle properties and optical responses for a large variety of materials.

The optimization process of one of the kernels (Kernel-C) utilized the roofline model and the performance impact of six optimization steps is shown below. Note that the optimization process also delivered significant performance increases on the Intel Xeon processors as well.

Figure 4

Overall the NESAP optimization process delivered significant increases in performance on both the Intel Xeon and Intel Xeon Phi processor Cori computational nodes. Intel Xeon processor results are shown in orange below and the Intel Xeon Phi processor results are shown in blue. In most cases, the speedup was greater on Intel Xeon Phi processors than on the Intel Xeon processors. Doug Doeffler noted that, “Haswell tends to be more forgiving of unoptimized code.” The Boxlib code is one exception because it started as a bandwidth limited code that fit into the Intel Xeon Phi processor MCDRAM memory.

Figure 5

In general, the MCDRAM system benefitted most of the NESAP applications.

Figure 6: NESAP performance improvements attributed to the MCDRAM memory system

Early Cori Scaling Studies

Cori contains a large number of computational nodes, so scaling is a key factor in efficiently utilizing the machine. Of concern is the observation that the Intel Xeon Phi computational nodes deliver roughly one-third the sequential performance of a Haswell/Broadwell Xeon core. However this lower performance core must support both the application and much of the communication stack and processing of the MPI communications calls.

Summarized in the following graphic, NERSC has found that Cori shows performance improvements at all scales and decompositions.

Figure 7: The Cori supercomputer shows scaling speedups at all scales

Summary

In a majority of the reporting NESAP codes and kernels, single node runs on the Intel Xeon Phi nodes outperformed single node runs on the Intel Xeon processor (Haswell) nodes. However, the superior Intel Xeon Phi processor performance only happened after optimization guided by the roofline model.

About the Author

Rob Farber is a global technology consultant and author with an extensive background in HPC and in developing machine learning technology that he applies at national labs and commercial organizations. He was also the editor of Parallel Programming with OpenACC. Rob can be reached at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very aggressive cadence of Falcon Shores products following that Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Researching both the world around us and the bodies we inhabit has c Read more…

Atos/Eviden Find a Strategic Path Forward

April 29, 2024

French IT giant Atos seems to have found a path forward. In recent years, Atos has been struggling financially and has not had much luck finding a buyer for some or all of its technology. Atos is the parent of the Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly debuted the latest version (February 15) and recently provi Read more…

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the University of Chicago, leads Chameleon. This innovative projec Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire