KILLER APPS FOR QUANTUM COMPUTERS

October 5, 2001

By Christopher Rogala, managing editor

HPCwire: Why do research on quantum computing?

TRAUB: Moore’s law has held for some 35 years. As you know, this is the empirical observation that chip densities, and therefore computer power, double roughly every eighteen months. Current projections estimate that this exponential improvement will end in one or two decades for a number of reasons:

— There are physical limits to the smallness of what can be put on a chip.

— There are financial limits because the cost of building a chip manufacturing facility doubles with each chip generation.

What might come after silicon computers? DNA computation will probably be special purpose. Nanotube circuits are being studied. There is much interest in quantum computers with the hope that they can solve problems which are intractable on classical machines.

There is huge current interest in quantum computing. A recent search on Google yielded 232,000 hits.

HPCwire: How confident are you that quantum computing will eventually become truly practical?

TRAUB: As you know, although quantum computers with a few qubits have been built in the laboratory, it is not clear whether quantum computers will prove to be an answer to the end of Moore’s law for silicon-based classical computers. A difficulty is whether the superposition of states can be maintained or, to use the interpretation of the Copenhagen school, whether we can avoid the collapse of the wave function by measurement or interaction of the computer with its environment.

HPCwire: What sort of time line do you foresee for the development of usable quantum computers?

TRAUB: At present we have quantum computers only in the laboratory. I cannot predict a time-line.

HPCwire: What role is the federal government playing in funding quantum computing research?

TRAUB: There are major federal government investments in quantum computing research. One of the main efforts is the Quantum Information Science and Technology (QuIST) by the Defense Advanced Research Projects Agency (DARPA). The kickoff conference for QuIST was to have been in Dallas, starting September 22. Due to the events of September 11, this meeting was deferred to a later date. For information on QuIST, see http://www.darpa.mail/ito/research/quist/index.html

HPCwire: Please describe your approach to quantum computing.

TRAUB: The research is being conducted jointly by the continuous algorithm and complexity group at Columbia and the quantum computation groups at MIT. The thrust of our research is if quantum computers can be built, what are the killer applications?

To date there have been only two major algorithms for quantum computers which are significantly better than for classical computers: Shor’s factorization and Grover’s data search. These algorithms are for discrete problems. But many applications in science and engineering have continuous mathematical models. Examples of such models are high dimensional integration, path integration, partial differential equations, and continuous optimization. Such problems are usually solved numerically; they can only be solved to with an uncertainty e. These problems are typically intractable on classical computers if one wants a worst-case deterministic assurance. For some continuous problems, intractability can be vanquished by weakening the worst-case deterministic assurance to a stochastic assurance such as the randomized setting of which Monte Carlo is the prime example.

We will seek new algorithms for quantum computers for important continuous applications. We believe that there are a number of killer applications which will enjoy exponential speed-ups over classical computation while requiring only a small or modest number of qubits. Preliminary investigations suggest that path integrals and high-dimensional finite integrals can be big winners on quantum computers.

Initially the algorithms will be implemented on quantum computer simulators. Then they will be implmented on NMR quantum computers in D. Cory’s laboratory at MIT.

For more on this research, see http://quantum.cs.columbia.edu

HPCwire: How will a functioning quantum computer actually work?

TRAUB: A variety of physical realizations are being studied in the laboratory. These include:

— Nuclear magnetic resonance (NMR) — Ion trap — Optical photon — Optical cavity — Quantum dot

HPCwire: How widepsread will the use of quantum computers become? For what uses is quantum computing best suited?

TRAUB: These are questions which I hope research will illuminate.

HPCwire: Other than advances in processing speed, what is to be gained from the research and development of this technology?

TRAUB: Quantum theory continues to amaze physicists because it is so counter to experience. As Niels Bohr put it, “Anyone who is not shocked by quantum theory has not understood it.” There is hope that quantum computing and quantum theory will lead to better understanding of both.

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Core42 Building an 172 Million-core AI Supercomputer in Texas

May 20, 2024

UAE-based Core42 is building an AI supercomputer with 172 million cores which will become operational later this year. The system, Condor Galaxy 3, was announced earlier this year and will have 192 nodes with Cerebras Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy with Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire