ATOM Consortium Welcomes 3 DOE National Laboratories to Accelerate Drug Discovery

March 29, 2021

SAN FRANCISCO, March 29, 2021 — The Accelerating Therapeutics for Opportunities in Medicine (ATOM) consortium today announced the U.S. Department of Energy’s Argonne, Brookhaven and Oak Ridge national laboratories are joining the consortium to further develop ATOM’s artificial intelligence (AI)-driven drug discovery platform.

The public-private ATOM consortium aims to transform drug discovery from a slow, sequential and high-risk process into a rapid, integrated and patient-centric model. Founded in 2017, ATOM is developing a pre-competitive, pre-clinical drug design platform that integrates diverse data types such as physicochemical properties, in vitro assay results and anonymized human clinical data, with AI, high-performance computing (HPC) and advanced experimental technologies. The goal is to shorten the drug discovery timeline from five years to less than one year.

“Bringing the experience and expertise from three additional DOE national laboratories to ATOM’s current partners, including the Frederick National Laboratory for Cancer Research (FNL), sponsored by the National Cancer Institute, reinforces ATOM as a valuable national resource to create powerful new capabilities for the cancer research community, building collaborations and driving advances in translational research to develop treatments more quickly,” said Eric Stahlberg, director of the Biomedical Informatics and Data Science group at FNL and co-lead of the ATOM consortium. “As the nation’s only national laboratory focused exclusively on biomedical research, including cancer, AIDS and emerging health threats, FNL has significant resources to apply to the challenges in finding new and effective treatments, and we are thrilled to add these new members to help ATOM achieve its lofty and potentially transformational goals.”

“It’s exciting to welcome three new national laboratories into the expanded ATOM consortium,” added Jim Brase, deputy associate director for computing at Lawrence Livermore National Laboratory and ATOM co-lead. “Their combined world-class expertise and experience in computing, simulation and machine learning will accelerate our progress toward molecular design of new therapeutics for the public good.”

Argonne National Laboratory (ANL) is a leader in high-performance computing and computer sciences, including data science, applied mathematics and computational science. As a member of the consortium, the Argonne Leadership Computing Facility will be leveraged to perform advanced simulations in life sciences, including molecular biology, microbiology, protein chemistry, bioinformatics, computational biology, environmental sciences and other scientific fields. Through this collaboration, Argonne will extend its deep expertise in creating groundbreaking machine learning analytics in biological and life sciences, and gain access to unique and complementary data in predictive biology and medicinal chemistry. Additionally, with its Aurora exascale computing system planned for 2022, Argonne will contribute unmatched computation resources to this collaboration.

“We are excited to officially join the ATOM consortium, having collaborated closely with  members on scientific research efforts since its formation,” said Rick Stevens, Argonne associate laboratory director for Computing, Environment and Life Sciences. “At Argonne we are actively developing and applying computational and machine learning approaches to a broad range of challenges in life sciences, including drug screening for COVID-19 and cancer. We look forward continuing these efforts as part of the ATOM consortium.”

Within ATOM, Brookhaven National Laboratory (BNL) will share its experience in creating scalable HPC frameworks that support optimal experimental design (OED) active-learning workflows for advanced simulations. These frameworks are designed to engage machine learning that can work with the complex, nonlinear and uncertain aspects that tend to characterize cancer drug therapy research. BNL’s contributions will include model-data integration, developing a reinforcement learning/active learning-guided OED workflow that works on the existing drug candidate dataset and designing a software framework to support scalable, adaptive algorithms used in the drug design and simulation pipeline.

“At Brookhaven, we are excited to apply our team’s work developing and using optimization algorithms directly to ATOM’s diverse computational data-driven modeling efforts,” said Francis J. “Frank” Alexander, deputy director of the Computational Science Initiative. “Often, mathematical models and systems of interest to ATOM cancer therapy problems are uncertain and under-characterized due to their extremely complex nature. At Brookhaven, our artificial intelligence, machine learning and applied mathematics work aims to unravel complexities to design computational and laboratory experiments that achieve discovery goals in the most efficient manner. We believe these efforts will have significant applications in ATOM that can greatly benefit and enhance the program’s impact. We look forward to contributing as part of the collaboration.”

Oak Ridge National Laboratory (ORNL) is the largest Department of Energy science and energy laboratory with expertise in accelerating scientific discovery through modeling and simulation on powerful supercomputers, data-intensive science and biological systems research. ORNL will apply its unique capabilities to examine the complex and dynamic interactions between candidate molecules and the human body. This approach, focused on quantitative systems pharmacology, predicts the window between an effective low dose of a drug and a higher dose that would be likely to elicit adverse effects. To better predict these therapeutic parameters, scientists are combining AI with systems models that represent proteins, organs and cellular processes. These data about relevant biological processes will integrate into the ATOM workflow to increase the chances of success when molecules go to clinical trials. ORNL is also building the nation’s first exascale-class supercomputer, Frontier, which will allow researchers to solve increasingly complex biological problems when it comes online in late 2021.

“Tightly coupling these quantitative systems pharmacology models with the larger AI workflow is what sets ATOM apart from other AI-driven drug discovery methods,” said Marti Head, who played a pivotal role in the formation of ATOM during her time at GlaxoSmithKline and now serves as director of the ORNL-University of Tennessee Joint Institute for Biological Sciences. “By integrating high-performance computing, simulation, and big data with chemistry and biology at scale, we can think about drug discovery in one coherent, networked piece and get drugs to patients faster with a greater probability of success. Thinking about the challenges we’ve all been struggling with since the start of the COVID-19 pandemic in March of 2020 is a perfect example of why having these drug discovery tools that can operate holistically and help us move faster is so important for the world.”

About ATOM

The Accelerating Therapeutics for Opportunities in Medicine (ATOM) consortium is a public-private partnership with the mission of transforming drug discovery by accelerating the development of more effective therapies for patients. ATOM’s goal is to transform drug discovery from a slow, sequential, and high-failure process into a rapid, integrated, and patient-centric model. The consortium is integrating high performance computing, diverse biological data, and emerging biotechnologies to create a new pre-competitive platform for drug discovery. Visit www.atomscience.org.

About ANL

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About BNL

Brookhaven National Laboratory delivers discovery science and transformative technology to power and secure the nation’s future. Primarily supported by DOE’s Office of Science, Brookhaven Lab is a multidisciplinary laboratory with seven Nobel Prize-winning discoveries, 37 R&D 100 Awards, and more than 70 years of pioneering research. Brookhaven is managed for the Office of Science by Brookhaven Science Associates, a partnership between Stony Brook University and Battelle. For more information, visit https://energy.gov/science.

About ORNL

Oak Ridge National Laboratory delivers scientific discoveries and technical breakthroughs needed to realize solutions in energy and national security and provide economic benefit to the nation. ORNL is managed by UT-Battelle for the DOE Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit https://energy.gov/science.


Source: BNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago and a computer scientist at Argonne National Laboratory, as s Read more…

PEARC21 Plenary Session: AI for Innovative Social Work

July 21, 2021

AI analysis of social media poses a double-edged sword for social work and addressing the needs of at-risk youths, said Desmond Upton Patton, senior associate dean, Innovation and Academic Affairs, Columbia University. S Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participants in the Scientific Research Enabled by CS-1 Systems panel Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

ExaWind Prepares for New Architectures, Bigger Simulations

July 10, 2021

The ExaWind project describes itself in terms of terms like wake formation, turbine-turbine interaction and blade-boundary-layer dynamics, but the pitch to the Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire