MIT Unveils New Qubit Circuit Design, Elevating the Future of Quantum Error Correction

September 26, 2023

Sept. 26, 2023 — In the future, quantum computers may be able to solve problems that are far too complex for today’s most powerful supercomputers. To realize this promise, quantum versions of error correction codes must be able to account for computational errors faster than they occur.

This artist rendering shows the researchers’ superconducting qubit architecture, with the fluxonium qubits in red and the blue, transmon coupler in between them. Credit: Krantz Nanoart.

However, today’s quantum computers are not yet robust enough to realize such error correction at commercially relevant scales.

On the way to overcoming this roadblock, MIT researchers demonstrated a novel superconducting qubit architecture that can perform operations between qubits — the building blocks of a quantum computer — with much greater accuracy than scientists have previously been able to achieve.

They utilize a relatively new type of superconducting qubit, known as fluxonium, which can have a lifespan that is much longer than more commonly used superconducting qubits.

Their architecture involves a special coupling element between two fluxonium qubits that enables them to perform logical operations, known as gates, in a highly accurate manner. It suppresses a type of unwanted background interaction that can introduce errors into quantum operations.

This approach enabled two-qubit gates that exceeded 99.9 percent accuracy and single-qubit gates with 99.99 percent accuracy. In addition, the researchers implemented this architecture on a chip using an extensible fabrication process.

“Building a large-scale quantum computer starts with robust qubits and gates. We showed a highly promising two-qubit system and laid out its many advantages for scaling. Our next step is to increase the number of qubits,” says Leon Ding PhD ’23, who was a physics graduate student in the Engineering Quantum Systems (EQuS) group and is the lead author of a paper on this architecture.

Ding wrote the paper with Max Hays, an EQuS postdoc; Youngkyu Sung PhD ’22; Bharath Kannan PhD ’22, who is now CEO of Atlantic Quantum; Kyle Serniak, a staff scientist and team lead at MIT Lincoln Laboratory; and senior author William D. Oliver, the Henry Ellis Warren professor of electrical engineering and computer science and of physics, director of the Center for Quantum Engineering, leader of EQuS, and associate director of the Research Laboratory of Electronics; as well as others at MIT and MIT Lincoln Laboratory. The research appears today in Physical Review X.

A New Take on the Fluxonium Qubit

In a classical computer, gates are logical operations performed on bits (a series of 1s and 0s) that enable computation. Gates in quantum computing can be thought of in the same way: A single qubit gate is a logical operation on one qubit, while a two-qubit gate is an operation that depends on the states of two connected qubits.

Fidelity measures the accuracy of quantum operations performed on these gates. Gates with the highest possible fidelities are essential because quantum errors accumulate exponentially. With billions of quantum operations occurring in a large-scale system, a seemingly small amount of error can quickly cause the entire system to fail.

In practice, one would use error-correcting codes to achieve such low error rates. However, there is a “fidelity threshold” the operations must surpass to implement these codes. Furthermore, pushing the fidelities far beyond this threshold reduces the overhead needed to implement error correcting codes.

For more than a decade, researchers have primarily used transmon qubits in their efforts to build quantum computers. Another type of superconducting qubit, known as a fluxonium qubit, originated more recently. Fluxonium qubits have been shown to have longer lifespans, or coherence times, than transmon qubits.

Coherence time is a measure of how long a qubit can perform operations or run algorithms before all the information in the qubit is lost.

“The longer a qubit lives, the higher fidelity the operations it tends to promote. These two numbers are tied together. But it has been unclear, even when fluxonium qubits themselves perform quite well, if you can perform good gates on them,” Ding says.

For the first time, Ding and his collaborators found a way to use these longer-lived qubits in an architecture that can support extremely robust, high-fidelity gates. In their architecture, the fluxonium qubits were able to achieve coherence times of more than a millisecond, about 10 times longer than traditional transmon qubits.

“Over the last couple of years, there have been several demonstrations of fluxonium outperforming transmons on the single-qubit level,” says Hays. “Our work shows that this performance boost can be extended to interactions between qubits as well.”

The fluxonium qubits were developed in a close collaboration with MIT Lincoln Laboratory, (MIT-LL), which has expertise in the design and fabrication of extensible superconducting qubit technologies.

“This experiment was exemplary of what we call the ‘one-team model’: the close collaboration between the EQuS group and the superconducting qubit team at MIT-LL,” says Serniak. “It’s worth highlighting here specifically the contribution of fabrication team at MIT-LL — they developed the capability to construct dense arrays of more than 100 Josephson junctions specifically for fluxoniums and other new qubit circuits.”

A Stronger Connection

Their novel architecture involves a circuit that has two fluxonium qubits on either end, with a tunable transmon coupler in the middle to join them together. This fluxonium-transmon-fluxonium (FTF) architecture enables a stronger coupling than methods that directly connect two fluxonium qubits.

FTF also minimizes unwanted interactions that occur in the background during quantum operations. Typically, stronger couplings between qubits can lead to more of this persistent background noise, known as static ZZ interactions. But the FTF architecture remedies this problem.

The ability to suppress these unwanted interactions and the longer coherence times of fluxonium qubits are two factors that enabled the researchers to demonstrate single-qubit gate fidelity of 99.99 percent and two-qubit gate fidelity of 99.9 percent.

These gate fidelities are well above the threshold needed for certain common error correcting codes, and should enable error detection in larger-scale systems.

“Quantum error correction builds system resilience through redundancy. By adding more qubits, we can improve overall system performance, provided the qubits are individually ‘good enough.’ Think of trying to perform a task with a room full of kindergartners. That’s a lot of chaos, and adding more kindergartners won’t make it better,” Oliver explains. “However, several mature graduate students working together leads to performance that exceeds any one of the individuals — that’s the threshold concept. While there is still much to do to build an extensible quantum computer, it starts with having high-quality quantum operations that are well above threshold.”

Building off these results, Ding, Sung, Kannan, Oliver, and others recently founded a quantum computing startup, Atlantic Quantum. The company seeks to use fluxonium qubits to build a viable quantum computer for commercial and industrial applications.

“These results are immediately applicable and could change the state of the entire field. This shows the community that there is an alternate path forward. We strongly believe that this architecture, or something like this using fluxonium qubits, shows great promise in terms of actually building a useful, fault-tolerant quantum computer,” Kannan says.

While such a computer is still probably 10 years away, this research is an important step in the right direction, he adds. Next, the researchers plan to demonstrate the advantages of the FTF architecture in systems with more than two connected qubits.

“This work pioneers a new architecture for coupling two fluxonium qubits. The achieved gate fidelities are not only the best on record for fluxonium, but also on par with those of transmons, the currently dominating qubit. More importantly, the architecture also offers a high degree of flexibility in parameter selection, a feature essential for scaling up to a multi-qubit fluxonium processor,” says Chunqing Deng, head of the experimental quantum team at the Quantum Laboratory of DAMO Academy, Alibaba’s global research institution, who was not involved with this work. “For those of us who believe that fluxonium is a fundamentally better qubit than transmon, this work is an exciting and affirming milestone. It will galvanize not just the development of fluxonium processors but also more generally that for qubits alternative to transmons.”

This work was funded, in part, by the U.S. Army Research Office, the U.S. Undersecretary of Defense for Research and Engineering, an IBM PhD fellowship, the Korea Foundation for Advance Studies, and the U.S. National Defense Science and Engineering Graduate Fellowship Program.


Source: Adam Zewe, MIT

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then found to be quite useful in large numbers by HPC practition Read more…

Intel Labs Fights Silent Data Corruption with Computational Storage

May 30, 2024

Artificial Intelligence (AI) Large Language Models and other forms of Deep Learning already require enormous amounts of training data. The data volumes are expected to grow as more organizations implement AI. This situat Read more…

Natcast/NSTC Issues Roadmap to Implement CHIPS and Science Act

May 29, 2024

Yesterday, CHIPS for America and Natcast, the operator of the National Semiconductor Technology Center (NSTC), released a roadmap of early steps for implementing portions of the ambitious $5 billion program. Natcast is t Read more…

Scientists Use GenAI to Uncover New Insights in Materials Science

May 29, 2024

With the help of generative AI, researchers from MIT and the University of Basel in Switzerland have developed a new machine-learning framework that can help uncover new insights about materials science. The findings of Read more…

Microsoft’s ARM-based CPU Cobalt will Support Windows 11 in the Cloud

May 29, 2024

Microsoft's ARM-based CPU, called Cobalt, is now available in the cloud for public consumption. Cobalt is Microsoft's first homegrown CPU, which was first announced six months ago. The cloud-based Cobalt VMs will support Read more…

2024 Winter Classic Finale! Gala Awards Ceremony

May 28, 2024

We wrapped up the competition with our traditional Gala Awards Ceremony. This was an exciting show, given that only 40 points or so separated first place from fifth place after the Google GROMACS Challenge and heading in Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Intel Labs Fights Silent Data Corruption with Computational Storage

May 30, 2024

Artificial Intelligence (AI) Large Language Models and other forms of Deep Learning already require enormous amounts of training data. The data volumes are expe Read more…

Scientists Use GenAI to Uncover New Insights in Materials Science

May 29, 2024

With the help of generative AI, researchers from MIT and the University of Basel in Switzerland have developed a new machine-learning framework that can help un Read more…

watsonx

IBM Makes a Push Towards Open-Source Services, Announces New watsonx Updates

May 28, 2024

Today, IBM declared that it is releasing a number of noteworthy changes to its watsonx platform, with the goal of increasing the openness, affordability, and fl Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storag Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC eve Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire