NVIDIA Unleashes Fermi GPU for HPC

By Michael Feldman

November 15, 2009

NVIDIA has announced the first Fermi GPU products here at the Supercomputing Conference (SC09) in Portland, Oregon, where thousands of attendees will get a chance to see the company’s next-generation chip in action. The GPUs will first touch down in NVIDIA’s new Tesla 20-series products aimed at HPC workstations and servers. The company will be demonstrating the new hardware at its booth on the SC09 exhibition floor, starting on Tuesday.

For those of you who somehow missed the big Fermi unveiling in September, NVIDIA’s latest GPU looks and acts much like a vector processor. The new architecture offers double-precision (DP) floating point performance north of 500 gigaflops per chip, systematic support for ECC memory, L1 and L2 caches, GDDR5 support, and a raft of new features to make the processor more programmer friendly, including C++ support. In short, Fermi is designed as a true computational GPU that is designed to offer a much wider application aperture for HPC, visual computing and data analytics than any previous graphics processor.

What they announced this week at SC09 were four Tesla 20 offerings — the C2050 and C2070 for workstations, and the S2050 and S2070 for 1U servers. What follows are the specs the company is quoting today, but since the products won’t hit the streets until next year, NVIDIA cautions that these numbers are “subject to change.”

Unlike the Tesla 10-series, which came standard with 4 GB of on-board memory per GPU, the first 20-series products are offering two memory configurations. The x2050 models come with 3 GB per GPU (2.625 GB per GPU with ECC enabled), while the x2070 models double that to 6 GB per GPU (5.25 GB per GPU with ECC enabled). Local memory capacity is quite important to these devices since the new Teslas use the PCI Express bus to transfer data back and forth to the CPU. So to avoid the time-consuming data shuffling, it pays to have the entire data set the GPU is operating in its local memory.

NVIDIA is planning for volume deployment of the new Teslas starting in May 2010. That’s probably later than the company would have preferred, given that there are plenty of users who would like to get their hands on them today. But with no equivalent technology in the HPC market, NVIDIA can afford to slip and slide a bit with the rollout. Fortunately, developers can get a jump start on their codes today. The CUDA C/C++ 3.0 beta, which incorporates Fermi support, is already available for download on NVIDIA’s Web site.

When the new hardware does arrive, it will look much the same as the 10-series boards. As before, the workstation Teslas are populated with a single GPU, but because it’s Fermi technology, they a deliver a lot more peak DP horsepower — between 520 to 630 DP per chip. That means that a Dell or HP workstation, which can house two of these cards, can provide well over a teraflop. NVIDIA quotes typical power draw at 190W, with a maximum of 225W. That’s a significant bump from the peak draw of the current C1060s at 187.8W, but since double precision performance is several times higher on the new parts, performance per watt is much improved.

The Tesla server boards contains four Fermi GPUs, and provide between 2.1 and 2.5 teraflops of DP — pretty amazing figures for a 1U box. Again, there’s a power penalty: 900W under a typical load, with a maximum of 1200W. That’s roughly twice the power draw of a typical x86 dual-socket 1U server. However, since the fastest x86 server chips churn out roughly 100 peak gigaflops per CPU, a Tesla server is going to be about five times better in the performance per watt department.

GPUs have an additional advantage. Compared to a graphics memory, CPU memory tends to be much more bandwidth constrained, thus it is comparatively more difficult to extract all the theoretical FLOPS from the processor. This is one of the principal reasons that performance on data-intensive apps almost never scales linearly on multicore CPUs. GPU architectures, on the other hand, have always been designed as data throughput processors, so the FLOPS to bandwidth ratio is much more favorable.

Compared to a quad-core x86 CPU, application speedups of 10x -200x are fairly typical on the current generation 10-series. For example, using the C1060, users have demonstrated a 31x speedup for seismic processing, 83x for certain financial computing applications, and 17x on some molecular dynamics codes. Those numbers are bound to improve further once the Fermi-equipped Teslas are in the field.

Beyond the performance numbers, NVIDIA thinks its best story is really price-performance. But first you have to get past the up-front costs. The new Teslas are not cheap. Suggested retail pricing for the 20-series lineup is as follows: C2050 ($2,499), C2070 ($3,999), S2050 ($12,995) and S2070 ($18,995), which works out to about twice the cost of the current 10-series Teslas: C1060 ($1,299) and S1070 ($8,995). From a capability point of view, though, the Fermi GPUs offer a lot more computational power and application range.

Keep in mind that while the double precision floating point performance for the 20-series parts has improved by a factor of 7 or 8, single precision (SP) performance will get a much more modest bump. Assuming the advertised 2:1 ratio for SP:DP FLOPS, single precision performance will only increase by about 20 percent compared to the Tesla 10s. That’s significant, but it might not be worth the extra cost if your application uses mostly single precision and you don’t require the other dandy capabilities that come with Fermi.

The bottom line is that in 2010, $5,000 can buy you a teraflop of hardware. That’s roughly a 10-fold improvement in price-performance compared to an equivalent CPU-based system. Of course, you have to factor in that you need a bunch of CPU hardware to drive the GPUs — at the minimum, one CPU core per graphics processor. By NVIDIA’s reckoning, a 17 teraflop HPC cluster that makes maximum use of Tesla 20 hardware would run about $250K, while an equivalent CPU-only cluster would cost a $1 million. But because of reduced power and cooling costs, the GPU-accelerated cluster will rack up additional savings over the lifetime of the system.

By offering high performance computing at a fraction of its current cost, NVIDIA is betting that GPU-based HPC will not only become commonplace, but will grow the market. Application deployments that just weren’t economically feasible to do with CPUs should now become quite attractive. When the new Teslas come online next year, this will be an especially important trend to watch.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

ARM, Fujitsu Targeting Open-source Software for Power Efficiency in 2-nm Chip

July 19, 2024

Fujitsu and ARM are relying on open-source software to bring power efficiency to an air-cooled supercomputing chip that will ship in 2027. Monaka chip, which will be made using the 2-nanometer process, is based on the Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI projects.). Other tools have joined the CUDA castle siege. AMD Read more…

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was recently posted by CERN’s department of experimental physi Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to communities across the globe. As climate change is warming ocea Read more…

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical claims. A paper published on July 10 by researchers in the U. Read more…

Belt-Tightening in Store for Most Federal FY25 Science Budets

July 15, 2024

If it’s summer, it’s federal budgeting time, not to mention an election year as well. There’s an excellent summary of the curent state of FY25 efforts reported in AIP’s policy FYI: Science Policy News. Belt-tight Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI pro Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to com Read more…

Shutterstock 1886124835

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical c Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

US Senators Propose $32 Billion in Annual AI Spending, but Critics Remain Unconvinced

July 5, 2024

Senate leader, Chuck Schumer, and three colleagues want the US government to spend at least $32 billion annually by 2026 for non-defense related AI systems.  T Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Leading Solution Providers

Contributors

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire