NVIDIA Unleashes Fermi GPU for HPC

By Michael Feldman

November 15, 2009

NVIDIA has announced the first Fermi GPU products here at the Supercomputing Conference (SC09) in Portland, Oregon, where thousands of attendees will get a chance to see the company’s next-generation chip in action. The GPUs will first touch down in NVIDIA’s new Tesla 20-series products aimed at HPC workstations and servers. The company will be demonstrating the new hardware at its booth on the SC09 exhibition floor, starting on Tuesday.

For those of you who somehow missed the big Fermi unveiling in September, NVIDIA’s latest GPU looks and acts much like a vector processor. The new architecture offers double-precision (DP) floating point performance north of 500 gigaflops per chip, systematic support for ECC memory, L1 and L2 caches, GDDR5 support, and a raft of new features to make the processor more programmer friendly, including C++ support. In short, Fermi is designed as a true computational GPU that is designed to offer a much wider application aperture for HPC, visual computing and data analytics than any previous graphics processor.

What they announced this week at SC09 were four Tesla 20 offerings — the C2050 and C2070 for workstations, and the S2050 and S2070 for 1U servers. What follows are the specs the company is quoting today, but since the products won’t hit the streets until next year, NVIDIA cautions that these numbers are “subject to change.”

Unlike the Tesla 10-series, which came standard with 4 GB of on-board memory per GPU, the first 20-series products are offering two memory configurations. The x2050 models come with 3 GB per GPU (2.625 GB per GPU with ECC enabled), while the x2070 models double that to 6 GB per GPU (5.25 GB per GPU with ECC enabled). Local memory capacity is quite important to these devices since the new Teslas use the PCI Express bus to transfer data back and forth to the CPU. So to avoid the time-consuming data shuffling, it pays to have the entire data set the GPU is operating in its local memory.

NVIDIA is planning for volume deployment of the new Teslas starting in May 2010. That’s probably later than the company would have preferred, given that there are plenty of users who would like to get their hands on them today. But with no equivalent technology in the HPC market, NVIDIA can afford to slip and slide a bit with the rollout. Fortunately, developers can get a jump start on their codes today. The CUDA C/C++ 3.0 beta, which incorporates Fermi support, is already available for download on NVIDIA’s Web site.

When the new hardware does arrive, it will look much the same as the 10-series boards. As before, the workstation Teslas are populated with a single GPU, but because it’s Fermi technology, they a deliver a lot more peak DP horsepower — between 520 to 630 DP per chip. That means that a Dell or HP workstation, which can house two of these cards, can provide well over a teraflop. NVIDIA quotes typical power draw at 190W, with a maximum of 225W. That’s a significant bump from the peak draw of the current C1060s at 187.8W, but since double precision performance is several times higher on the new parts, performance per watt is much improved.

The Tesla server boards contains four Fermi GPUs, and provide between 2.1 and 2.5 teraflops of DP — pretty amazing figures for a 1U box. Again, there’s a power penalty: 900W under a typical load, with a maximum of 1200W. That’s roughly twice the power draw of a typical x86 dual-socket 1U server. However, since the fastest x86 server chips churn out roughly 100 peak gigaflops per CPU, a Tesla server is going to be about five times better in the performance per watt department.

GPUs have an additional advantage. Compared to a graphics memory, CPU memory tends to be much more bandwidth constrained, thus it is comparatively more difficult to extract all the theoretical FLOPS from the processor. This is one of the principal reasons that performance on data-intensive apps almost never scales linearly on multicore CPUs. GPU architectures, on the other hand, have always been designed as data throughput processors, so the FLOPS to bandwidth ratio is much more favorable.

Compared to a quad-core x86 CPU, application speedups of 10x -200x are fairly typical on the current generation 10-series. For example, using the C1060, users have demonstrated a 31x speedup for seismic processing, 83x for certain financial computing applications, and 17x on some molecular dynamics codes. Those numbers are bound to improve further once the Fermi-equipped Teslas are in the field.

Beyond the performance numbers, NVIDIA thinks its best story is really price-performance. But first you have to get past the up-front costs. The new Teslas are not cheap. Suggested retail pricing for the 20-series lineup is as follows: C2050 ($2,499), C2070 ($3,999), S2050 ($12,995) and S2070 ($18,995), which works out to about twice the cost of the current 10-series Teslas: C1060 ($1,299) and S1070 ($8,995). From a capability point of view, though, the Fermi GPUs offer a lot more computational power and application range.

Keep in mind that while the double precision floating point performance for the 20-series parts has improved by a factor of 7 or 8, single precision (SP) performance will get a much more modest bump. Assuming the advertised 2:1 ratio for SP:DP FLOPS, single precision performance will only increase by about 20 percent compared to the Tesla 10s. That’s significant, but it might not be worth the extra cost if your application uses mostly single precision and you don’t require the other dandy capabilities that come with Fermi.

The bottom line is that in 2010, $5,000 can buy you a teraflop of hardware. That’s roughly a 10-fold improvement in price-performance compared to an equivalent CPU-based system. Of course, you have to factor in that you need a bunch of CPU hardware to drive the GPUs — at the minimum, one CPU core per graphics processor. By NVIDIA’s reckoning, a 17 teraflop HPC cluster that makes maximum use of Tesla 20 hardware would run about $250K, while an equivalent CPU-only cluster would cost a $1 million. But because of reduced power and cooling costs, the GPU-accelerated cluster will rack up additional savings over the lifetime of the system.

By offering high performance computing at a fraction of its current cost, NVIDIA is betting that GPU-based HPC will not only become commonplace, but will grow the market. Application deployments that just weren’t economically feasible to do with CPUs should now become quite attractive. When the new Teslas come online next year, this will be an especially important trend to watch.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This