NVIDIA Unleashes Fermi GPU for HPC

By Michael Feldman

November 15, 2009

NVIDIA has announced the first Fermi GPU products here at the Supercomputing Conference (SC09) in Portland, Oregon, where thousands of attendees will get a chance to see the company’s next-generation chip in action. The GPUs will first touch down in NVIDIA’s new Tesla 20-series products aimed at HPC workstations and servers. The company will be demonstrating the new hardware at its booth on the SC09 exhibition floor, starting on Tuesday.

For those of you who somehow missed the big Fermi unveiling in September, NVIDIA’s latest GPU looks and acts much like a vector processor. The new architecture offers double-precision (DP) floating point performance north of 500 gigaflops per chip, systematic support for ECC memory, L1 and L2 caches, GDDR5 support, and a raft of new features to make the processor more programmer friendly, including C++ support. In short, Fermi is designed as a true computational GPU that is designed to offer a much wider application aperture for HPC, visual computing and data analytics than any previous graphics processor.

What they announced this week at SC09 were four Tesla 20 offerings — the C2050 and C2070 for workstations, and the S2050 and S2070 for 1U servers. What follows are the specs the company is quoting today, but since the products won’t hit the streets until next year, NVIDIA cautions that these numbers are “subject to change.”

Unlike the Tesla 10-series, which came standard with 4 GB of on-board memory per GPU, the first 20-series products are offering two memory configurations. The x2050 models come with 3 GB per GPU (2.625 GB per GPU with ECC enabled), while the x2070 models double that to 6 GB per GPU (5.25 GB per GPU with ECC enabled). Local memory capacity is quite important to these devices since the new Teslas use the PCI Express bus to transfer data back and forth to the CPU. So to avoid the time-consuming data shuffling, it pays to have the entire data set the GPU is operating in its local memory.

NVIDIA is planning for volume deployment of the new Teslas starting in May 2010. That’s probably later than the company would have preferred, given that there are plenty of users who would like to get their hands on them today. But with no equivalent technology in the HPC market, NVIDIA can afford to slip and slide a bit with the rollout. Fortunately, developers can get a jump start on their codes today. The CUDA C/C++ 3.0 beta, which incorporates Fermi support, is already available for download on NVIDIA’s Web site.

When the new hardware does arrive, it will look much the same as the 10-series boards. As before, the workstation Teslas are populated with a single GPU, but because it’s Fermi technology, they a deliver a lot more peak DP horsepower — between 520 to 630 DP per chip. That means that a Dell or HP workstation, which can house two of these cards, can provide well over a teraflop. NVIDIA quotes typical power draw at 190W, with a maximum of 225W. That’s a significant bump from the peak draw of the current C1060s at 187.8W, but since double precision performance is several times higher on the new parts, performance per watt is much improved.

The Tesla server boards contains four Fermi GPUs, and provide between 2.1 and 2.5 teraflops of DP — pretty amazing figures for a 1U box. Again, there’s a power penalty: 900W under a typical load, with a maximum of 1200W. That’s roughly twice the power draw of a typical x86 dual-socket 1U server. However, since the fastest x86 server chips churn out roughly 100 peak gigaflops per CPU, a Tesla server is going to be about five times better in the performance per watt department.

GPUs have an additional advantage. Compared to a graphics memory, CPU memory tends to be much more bandwidth constrained, thus it is comparatively more difficult to extract all the theoretical FLOPS from the processor. This is one of the principal reasons that performance on data-intensive apps almost never scales linearly on multicore CPUs. GPU architectures, on the other hand, have always been designed as data throughput processors, so the FLOPS to bandwidth ratio is much more favorable.

Compared to a quad-core x86 CPU, application speedups of 10x -200x are fairly typical on the current generation 10-series. For example, using the C1060, users have demonstrated a 31x speedup for seismic processing, 83x for certain financial computing applications, and 17x on some molecular dynamics codes. Those numbers are bound to improve further once the Fermi-equipped Teslas are in the field.

Beyond the performance numbers, NVIDIA thinks its best story is really price-performance. But first you have to get past the up-front costs. The new Teslas are not cheap. Suggested retail pricing for the 20-series lineup is as follows: C2050 ($2,499), C2070 ($3,999), S2050 ($12,995) and S2070 ($18,995), which works out to about twice the cost of the current 10-series Teslas: C1060 ($1,299) and S1070 ($8,995). From a capability point of view, though, the Fermi GPUs offer a lot more computational power and application range.

Keep in mind that while the double precision floating point performance for the 20-series parts has improved by a factor of 7 or 8, single precision (SP) performance will get a much more modest bump. Assuming the advertised 2:1 ratio for SP:DP FLOPS, single precision performance will only increase by about 20 percent compared to the Tesla 10s. That’s significant, but it might not be worth the extra cost if your application uses mostly single precision and you don’t require the other dandy capabilities that come with Fermi.

The bottom line is that in 2010, $5,000 can buy you a teraflop of hardware. That’s roughly a 10-fold improvement in price-performance compared to an equivalent CPU-based system. Of course, you have to factor in that you need a bunch of CPU hardware to drive the GPUs — at the minimum, one CPU core per graphics processor. By NVIDIA’s reckoning, a 17 teraflop HPC cluster that makes maximum use of Tesla 20 hardware would run about $250K, while an equivalent CPU-only cluster would cost a $1 million. But because of reduced power and cooling costs, the GPU-accelerated cluster will rack up additional savings over the lifetime of the system.

By offering high performance computing at a fraction of its current cost, NVIDIA is betting that GPU-based HPC will not only become commonplace, but will grow the market. Application deployments that just weren’t economically feasible to do with CPUs should now become quite attractive. When the new Teslas come online next year, this will be an especially important trend to watch.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire