NVIDIA Unleashes Fermi GPU for HPC

By Michael Feldman

November 15, 2009

NVIDIA has announced the first Fermi GPU products here at the Supercomputing Conference (SC09) in Portland, Oregon, where thousands of attendees will get a chance to see the company’s next-generation chip in action. The GPUs will first touch down in NVIDIA’s new Tesla 20-series products aimed at HPC workstations and servers. The company will be demonstrating the new hardware at its booth on the SC09 exhibition floor, starting on Tuesday.

For those of you who somehow missed the big Fermi unveiling in September, NVIDIA’s latest GPU looks and acts much like a vector processor. The new architecture offers double-precision (DP) floating point performance north of 500 gigaflops per chip, systematic support for ECC memory, L1 and L2 caches, GDDR5 support, and a raft of new features to make the processor more programmer friendly, including C++ support. In short, Fermi is designed as a true computational GPU that is designed to offer a much wider application aperture for HPC, visual computing and data analytics than any previous graphics processor.

What they announced this week at SC09 were four Tesla 20 offerings — the C2050 and C2070 for workstations, and the S2050 and S2070 for 1U servers. What follows are the specs the company is quoting today, but since the products won’t hit the streets until next year, NVIDIA cautions that these numbers are “subject to change.”

Unlike the Tesla 10-series, which came standard with 4 GB of on-board memory per GPU, the first 20-series products are offering two memory configurations. The x2050 models come with 3 GB per GPU (2.625 GB per GPU with ECC enabled), while the x2070 models double that to 6 GB per GPU (5.25 GB per GPU with ECC enabled). Local memory capacity is quite important to these devices since the new Teslas use the PCI Express bus to transfer data back and forth to the CPU. So to avoid the time-consuming data shuffling, it pays to have the entire data set the GPU is operating in its local memory.

NVIDIA is planning for volume deployment of the new Teslas starting in May 2010. That’s probably later than the company would have preferred, given that there are plenty of users who would like to get their hands on them today. But with no equivalent technology in the HPC market, NVIDIA can afford to slip and slide a bit with the rollout. Fortunately, developers can get a jump start on their codes today. The CUDA C/C++ 3.0 beta, which incorporates Fermi support, is already available for download on NVIDIA’s Web site.

When the new hardware does arrive, it will look much the same as the 10-series boards. As before, the workstation Teslas are populated with a single GPU, but because it’s Fermi technology, they a deliver a lot more peak DP horsepower — between 520 to 630 DP per chip. That means that a Dell or HP workstation, which can house two of these cards, can provide well over a teraflop. NVIDIA quotes typical power draw at 190W, with a maximum of 225W. That’s a significant bump from the peak draw of the current C1060s at 187.8W, but since double precision performance is several times higher on the new parts, performance per watt is much improved.

The Tesla server boards contains four Fermi GPUs, and provide between 2.1 and 2.5 teraflops of DP — pretty amazing figures for a 1U box. Again, there’s a power penalty: 900W under a typical load, with a maximum of 1200W. That’s roughly twice the power draw of a typical x86 dual-socket 1U server. However, since the fastest x86 server chips churn out roughly 100 peak gigaflops per CPU, a Tesla server is going to be about five times better in the performance per watt department.

GPUs have an additional advantage. Compared to a graphics memory, CPU memory tends to be much more bandwidth constrained, thus it is comparatively more difficult to extract all the theoretical FLOPS from the processor. This is one of the principal reasons that performance on data-intensive apps almost never scales linearly on multicore CPUs. GPU architectures, on the other hand, have always been designed as data throughput processors, so the FLOPS to bandwidth ratio is much more favorable.

Compared to a quad-core x86 CPU, application speedups of 10x -200x are fairly typical on the current generation 10-series. For example, using the C1060, users have demonstrated a 31x speedup for seismic processing, 83x for certain financial computing applications, and 17x on some molecular dynamics codes. Those numbers are bound to improve further once the Fermi-equipped Teslas are in the field.

Beyond the performance numbers, NVIDIA thinks its best story is really price-performance. But first you have to get past the up-front costs. The new Teslas are not cheap. Suggested retail pricing for the 20-series lineup is as follows: C2050 ($2,499), C2070 ($3,999), S2050 ($12,995) and S2070 ($18,995), which works out to about twice the cost of the current 10-series Teslas: C1060 ($1,299) and S1070 ($8,995). From a capability point of view, though, the Fermi GPUs offer a lot more computational power and application range.

Keep in mind that while the double precision floating point performance for the 20-series parts has improved by a factor of 7 or 8, single precision (SP) performance will get a much more modest bump. Assuming the advertised 2:1 ratio for SP:DP FLOPS, single precision performance will only increase by about 20 percent compared to the Tesla 10s. That’s significant, but it might not be worth the extra cost if your application uses mostly single precision and you don’t require the other dandy capabilities that come with Fermi.

The bottom line is that in 2010, $5,000 can buy you a teraflop of hardware. That’s roughly a 10-fold improvement in price-performance compared to an equivalent CPU-based system. Of course, you have to factor in that you need a bunch of CPU hardware to drive the GPUs — at the minimum, one CPU core per graphics processor. By NVIDIA’s reckoning, a 17 teraflop HPC cluster that makes maximum use of Tesla 20 hardware would run about $250K, while an equivalent CPU-only cluster would cost a $1 million. But because of reduced power and cooling costs, the GPU-accelerated cluster will rack up additional savings over the lifetime of the system.

By offering high performance computing at a fraction of its current cost, NVIDIA is betting that GPU-based HPC will not only become commonplace, but will grow the market. Application deployments that just weren’t economically feasible to do with CPUs should now become quite attractive. When the new Teslas come online next year, this will be an especially important trend to watch.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This