Supercomputing Crucial to Clean Energy Production

By Tiffany Trader

February 13, 2013

The Office of Fossil Energy’s National Energy Technology Laboratory (NETL) is the proud owner of a brand new SGI supercomputer. Named High-Performance Computer for Energy and the Environment, or HPCEE for short, the 500 teraflops machine will help NETL scientists undertake a broad range of energy and environmental research, with a focus on coal, natural gas and oil.

Growing concern over climate change has led many to reconsider our relationship with fossil fuels, which comprise nearly 60 percent of human-generated CO2 emissions. The reality is that for now, traditional energy sources continue to dominate US energy policy, but there are signs of change. The US Department of Energy (DOE) under the direction of outgoing-Secretary Steven Chu has pushed for an environmentally-sound, sustainable energy portfolio that includes alternative energy sources. It was Chu who set the stage for some of NETL’s most prominent programs, for example the Simulation-Based Engineering User Center (SBEUC) and the Carbon Capture Simulation Initiative (CCSI).

As a Department of Energy lab, NETL supports the DOE’s mission to advance the national, economic, and energy security of the United States, mainly through a focus on fossil fuel resources. A glance at the lab’s key mandates – which include clean power, climate change mitigation, energy-efficiency and renewable energy – reveals an expanded awareness of today’s energy-related challenges. One of the ways that NETL contributes to climate change mitigation is by developing new methods for monitoring, capturing and sequestering greenhouse gases as directed by the President’s Global Climate Change Initiative. High-performance computing is essential to carrying out this research.

HPCwire spoke with Chris Guenther, director of NETL’s Computational Science Division to find out more about the new system. Mr. Guenther is responsible for the day-to-day management of NETL’s Simulation-Based Engineering User Center – where HPCEE is housed.

“Within the division what we try to do is develop physics-based models and methods and tools to accelerate the development and deployment of advanced technology to utilize our fossil energy resources,” says Guenther.

His team undertakes a wide range of modeling and simulation work at various scales, from molecules to devices to entire power plants.

HPCEE was commissioned to support the computational fluid dynamics and computational chemistry efforts underway at NETL. The SGI Rackable machine contains 24,192 2.6 gHz Intel Xeon E5-2670 cores with 48,384 GB of system memory in 1,512 computational nodes connected via Mellanox InfiniBand QDR. The architecture achieved 413.5 teraflops Rmax (Linpack) out of 503.2 teraflops peak, for an impressive theoretical efficiency of 82 percent.

NETL characterizes HPCEE as one of the most energy-efficient systems of its kind in the world, but that statement merits closer inspection. The half-petaflop supercomputer placed a respectable 55th on the latest TOP500 list. But on the Green500 list, which ranks top systems based on FLOPS per watt, the system finished in 403rd place – not exactly boast-worthy.

Where NETL can claim some green bragging rights is on the datacenter-side. HPCEE resides inside an SGI ICE Cube Air datacenter, which provides cooling and power with a PUE in the 1.03 to 1.06 range. It does so “out-of-the-box” – no special modifications were made to achieve this level of performance.

This low PUE reading means that only one percent of total electrical consumption goes toward cooling the equipment. NETL notes that the increased efficiency translates into an average annual savings of $450,000.

“The SGI Modular Data Center consists of a 1.1 MW transformer and utility/power center supporting two equipment aisles of 20 racks each,” says Guenther. “Three racks of storage and utility equipment, three racks of Mellanox trunk switches and 21 racks of compute nodes fill 27 of the available racks.”

Asked what the impetus was for a modular datacenter as opposed to a custom-built site, Guenther referenced a site study which showed that the external modular datacenter approach was more cost effective and quicker in terms of providing compute cycles to the Fossil Energy research staff. The purchase decision was based on a scoring system which put an emphasis on performance and efficiency, he reported.

Next >>

This 500-teraflops machine is a really big deal for NETL researchers and their partners. Up to now, the laboratory has gotten by with using many small computer clusters, but there were many days when users simply could not find available cores to do their work, notes Guenther. With an order of magnitude more computing power, scientists will have more cores available to them and they’ll be able to model extremely difficult problems, such as coal jet penetration into a gasifier.

NETL HPCEE supercomputerAs HPCEE comes online, they will start shutting down the other clusters except for one or two, adding to the overall energy savings.

While most of NETL’s funding and work is to support the Office of Fossil Energy, Guenther emphasizes an R&D portfolio that is “weighted heavily toward technology that is much more environmentally-friendly as well as the optimization of existing fossil energy devices.”

“Fossil energy gets a bad rap, but just about everything that we are doing is focusing on the environmental aspect of fossil energy,” he adds.

Underscoring this point, Guenther cites the innovative work of the Carbon Capture Simulation Initiative (CSSI), tasked with accelerating the development and deployment of sorbent-based CO2 capture. This NETL-led project just rolled out a suite of 21 computational tools and models aimed at new carbon capture technologies.

“Programs like this are the reason we have HPCEE,” says Guenther. “The high fidelity computational fluid dynamic modeling work that is part of the Carbon Capture Simulation Initiative will be done exclusively on this new system.”

sorbent pellets
Sorbent pellets developed by NETL prepared by Pressure Chemical Company

“There’s no commercial-scale sorbent-based carbon capture systems out there,” he continues. “We’re developing our own sorbents here at NETL from the ground up. We’re testing those; we’re modeling them in small reactors; we’re gaining confidence in our models that will allow us then to scale up these models, to actually look at the ability in the virtual world to do commercial-scale sorbent-based CO2 capture.”

For industry, sophisticated models like these are critical for reducing the risks associated with commercialization.

Combining innovative technology with an effective industry transfer mechanism is a winning strategy. NETL was just recognized by R&D Magazine for its work with sorbent pellets. The magazine considers this novel carbon capture technology among the 100 most technologically significant products to enter the marketplace within the past year.

The CCSI also helps quantify the uncertainty associated with a model’s prediction. “In this initiative, they’re conducting models at different length and time scales,” says Guenther. “At one end they’re doing process-level modeling, or the overall power-plant type modeling. At the other end, they’re doing very high-fidelity, kinetic models and CFD models that are very small length of time scales, and they’re coupling those different models together in a consistent fashion and they are propagating the uncertainty through these different length and time scales.”

NETL projects span the entire gamut of research stages. “We work with industry and other people on brand-new technology that has not hit the ground as well as technology that’s already out there that we are trying to optimize and/or improve,” says Guenther.

As an example of the former, the lab is exploring promising new technologies like chemical-looping, which offers the potential to generate electricity from coal with significantly less pollution and less cost. To do this, researchers are building models and gaining insight from a fundamental level using small experiments to help guide them.

And at the other end of the spectrum, NETL scientists are doing work with coal gasification, a technology that is more mature and which they have more experience with. This is an area where they are applying their models toward industry transfer and commercialization.

The HPCEE support staff are currently in the process of migrating over data, software and all the necessary tools for performing day-to-day simulations. They anticipate that the system will be production-ready by early Spring.

When HPCEE goes live, researchers from the five universities that are part of the NETL-Regional University Alliance – Carnegie Mellon, Penn State, the University of Pittsburgh, West Virginia University, and Virginia Tech – will also be able to access the supercomputer.


Related Articles

Steven Chu’s DOE Legacy: Big Science, Grand Challenges and Solyndra

New Computational Tools Help Carbon Capture Technologies

Clean Energy Conundrum: In Europe, Regulations Have Helped Create a “Golden Age Of Coal”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Companies D-Wave and Rigetti Again Face Stock Delisting

October 4, 2024

Both D-Wave (NYSE: QBTS) and Rigetti (Nasdaq: RGTI) are again facing stock delisting. This is a third time for D-Wave, which issued a press release today following notification by the SEC. Rigetti was notified of delisti Read more…

Alps Scientific Symposium Highlights AI’s Role in Tackling Science’s Biggest Challenges

October 4, 2024

ETH Zürich recently celebrated the launch of the AI-optimized “Alps” supercomputer with a scientific symposium focused on the future possibilities of scientific AI thanks to increased compute power and a flexible ar Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvidia GPUs). Recently, MLCommons introduced the results of its Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago today emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever physical processor they want, without making code changes, the Read more…

IBM Quantum Summit Evolves into Developer Conference

October 2, 2024

Instead of its usual quantum summit this year, IBM will hold its first IBM Quantum Developer Conference which the company is calling, “an exclusive, first-of-its-kind.” It’s planned as an in-person conference at th Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed that the company will release Falcon Shores as a GPU. The com Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvi Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago today emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever ph Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed t Read more…

How GenAI Will Impact Jobs In the Real World

September 30, 2024

There’s been a lot of fear, uncertainty, and doubt (FUD) about the potential for generative AI to take people’s jobs. The capability of large language model Read more…

IBM and NASA Launch Open-Source AI Model for Advanced Climate and Weather Research

September 25, 2024

IBM and NASA have developed a new AI foundation model for a wide range of climate and weather applications, with contributions from the Department of Energy’s Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Building the Quantum Economy — Chicago Style

September 24, 2024

Will there be regional winner in the global quantum economy sweepstakes? With visions of Silicon Valley’s iconic success in electronics and Boston/Cambridge� Read more…

How GPUs Are Embedded in the HPC Landscape

September 23, 2024

Grasping the basics of Graphics Processing Unit (GPU) architecture is crucial for understanding how these powerful processors function, particularly in high-per Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire