Supercomputing Crucial to Clean Energy Production

By Tiffany Trader

February 13, 2013

The Office of Fossil Energy’s National Energy Technology Laboratory (NETL) is the proud owner of a brand new SGI supercomputer. Named High-Performance Computer for Energy and the Environment, or HPCEE for short, the 500 teraflops machine will help NETL scientists undertake a broad range of energy and environmental research, with a focus on coal, natural gas and oil.

Growing concern over climate change has led many to reconsider our relationship with fossil fuels, which comprise nearly 60 percent of human-generated CO2 emissions. The reality is that for now, traditional energy sources continue to dominate US energy policy, but there are signs of change. The US Department of Energy (DOE) under the direction of outgoing-Secretary Steven Chu has pushed for an environmentally-sound, sustainable energy portfolio that includes alternative energy sources. It was Chu who set the stage for some of NETL’s most prominent programs, for example the Simulation-Based Engineering User Center (SBEUC) and the Carbon Capture Simulation Initiative (CCSI).

As a Department of Energy lab, NETL supports the DOE’s mission to advance the national, economic, and energy security of the United States, mainly through a focus on fossil fuel resources. A glance at the lab’s key mandates – which include clean power, climate change mitigation, energy-efficiency and renewable energy – reveals an expanded awareness of today’s energy-related challenges. One of the ways that NETL contributes to climate change mitigation is by developing new methods for monitoring, capturing and sequestering greenhouse gases as directed by the President’s Global Climate Change Initiative. High-performance computing is essential to carrying out this research.

HPCwire spoke with Chris Guenther, director of NETL’s Computational Science Division to find out more about the new system. Mr. Guenther is responsible for the day-to-day management of NETL’s Simulation-Based Engineering User Center – where HPCEE is housed.

“Within the division what we try to do is develop physics-based models and methods and tools to accelerate the development and deployment of advanced technology to utilize our fossil energy resources,” says Guenther.

His team undertakes a wide range of modeling and simulation work at various scales, from molecules to devices to entire power plants.

HPCEE was commissioned to support the computational fluid dynamics and computational chemistry efforts underway at NETL. The SGI Rackable machine contains 24,192 2.6 gHz Intel Xeon E5-2670 cores with 48,384 GB of system memory in 1,512 computational nodes connected via Mellanox InfiniBand QDR. The architecture achieved 413.5 teraflops Rmax (Linpack) out of 503.2 teraflops peak, for an impressive theoretical efficiency of 82 percent.

NETL characterizes HPCEE as one of the most energy-efficient systems of its kind in the world, but that statement merits closer inspection. The half-petaflop supercomputer placed a respectable 55th on the latest TOP500 list. But on the Green500 list, which ranks top systems based on FLOPS per watt, the system finished in 403rd place – not exactly boast-worthy.

Where NETL can claim some green bragging rights is on the datacenter-side. HPCEE resides inside an SGI ICE Cube Air datacenter, which provides cooling and power with a PUE in the 1.03 to 1.06 range. It does so “out-of-the-box” – no special modifications were made to achieve this level of performance.

This low PUE reading means that only one percent of total electrical consumption goes toward cooling the equipment. NETL notes that the increased efficiency translates into an average annual savings of $450,000.

“The SGI Modular Data Center consists of a 1.1 MW transformer and utility/power center supporting two equipment aisles of 20 racks each,” says Guenther. “Three racks of storage and utility equipment, three racks of Mellanox trunk switches and 21 racks of compute nodes fill 27 of the available racks.”

Asked what the impetus was for a modular datacenter as opposed to a custom-built site, Guenther referenced a site study which showed that the external modular datacenter approach was more cost effective and quicker in terms of providing compute cycles to the Fossil Energy research staff. The purchase decision was based on a scoring system which put an emphasis on performance and efficiency, he reported.

Next >>

This 500-teraflops machine is a really big deal for NETL researchers and their partners. Up to now, the laboratory has gotten by with using many small computer clusters, but there were many days when users simply could not find available cores to do their work, notes Guenther. With an order of magnitude more computing power, scientists will have more cores available to them and they’ll be able to model extremely difficult problems, such as coal jet penetration into a gasifier.

NETL HPCEE supercomputerAs HPCEE comes online, they will start shutting down the other clusters except for one or two, adding to the overall energy savings.

While most of NETL’s funding and work is to support the Office of Fossil Energy, Guenther emphasizes an R&D portfolio that is “weighted heavily toward technology that is much more environmentally-friendly as well as the optimization of existing fossil energy devices.”

“Fossil energy gets a bad rap, but just about everything that we are doing is focusing on the environmental aspect of fossil energy,” he adds.

Underscoring this point, Guenther cites the innovative work of the Carbon Capture Simulation Initiative (CSSI), tasked with accelerating the development and deployment of sorbent-based CO2 capture. This NETL-led project just rolled out a suite of 21 computational tools and models aimed at new carbon capture technologies.

“Programs like this are the reason we have HPCEE,” says Guenther. “The high fidelity computational fluid dynamic modeling work that is part of the Carbon Capture Simulation Initiative will be done exclusively on this new system.”

sorbent pellets
Sorbent pellets developed by NETL prepared by Pressure Chemical Company

“There’s no commercial-scale sorbent-based carbon capture systems out there,” he continues. “We’re developing our own sorbents here at NETL from the ground up. We’re testing those; we’re modeling them in small reactors; we’re gaining confidence in our models that will allow us then to scale up these models, to actually look at the ability in the virtual world to do commercial-scale sorbent-based CO2 capture.”

For industry, sophisticated models like these are critical for reducing the risks associated with commercialization.

Combining innovative technology with an effective industry transfer mechanism is a winning strategy. NETL was just recognized by R&D Magazine for its work with sorbent pellets. The magazine considers this novel carbon capture technology among the 100 most technologically significant products to enter the marketplace within the past year.

The CCSI also helps quantify the uncertainty associated with a model’s prediction. “In this initiative, they’re conducting models at different length and time scales,” says Guenther. “At one end they’re doing process-level modeling, or the overall power-plant type modeling. At the other end, they’re doing very high-fidelity, kinetic models and CFD models that are very small length of time scales, and they’re coupling those different models together in a consistent fashion and they are propagating the uncertainty through these different length and time scales.”

NETL projects span the entire gamut of research stages. “We work with industry and other people on brand-new technology that has not hit the ground as well as technology that’s already out there that we are trying to optimize and/or improve,” says Guenther.

As an example of the former, the lab is exploring promising new technologies like chemical-looping, which offers the potential to generate electricity from coal with significantly less pollution and less cost. To do this, researchers are building models and gaining insight from a fundamental level using small experiments to help guide them.

And at the other end of the spectrum, NETL scientists are doing work with coal gasification, a technology that is more mature and which they have more experience with. This is an area where they are applying their models toward industry transfer and commercialization.

The HPCEE support staff are currently in the process of migrating over data, software and all the necessary tools for performing day-to-day simulations. They anticipate that the system will be production-ready by early Spring.

When HPCEE goes live, researchers from the five universities that are part of the NETL-Regional University Alliance – Carnegie Mellon, Penn State, the University of Pittsburgh, West Virginia University, and Virginia Tech – will also be able to access the supercomputer.


Related Articles

Steven Chu’s DOE Legacy: Big Science, Grand Challenges and Solyndra

New Computational Tools Help Carbon Capture Technologies

Clean Energy Conundrum: In Europe, Regulations Have Helped Create a “Golden Age Of Coal”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them better through the miracle of video..... Team FAU/TUC is a c Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from SC17 chair Bernd Mohr, where he lauded the competition for Read more…

By Dan Olds

Activist Investor Starboard Buys 10.7% Stake in Mellanox; Sale Possible?

November 20, 2017

Starboard Value has reportedly taken a 10.7 percent stake in interconnect specialist Mellanox Technologies, and according to the Wall Street Journal, has urged the company “to improve its margins and stock and explore Read more…

By John Russell

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

Installation of Sierra Supercomputer Steams Along at LLNL

November 20, 2017

Sierra, the 125 petaflops (peak) machine based on IBM’s Power9 chip being built at Lawrence Livermore National Laboratory, sometimes takes a back seat to Summit, the ~200 petaflops system being built at Oak Ridge Natio Read more…

By John Russell

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them bet Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This