Supercomputing Crucial to Clean Energy Production

By Tiffany Trader

February 13, 2013

The Office of Fossil Energy’s National Energy Technology Laboratory (NETL) is the proud owner of a brand new SGI supercomputer. Named High-Performance Computer for Energy and the Environment, or HPCEE for short, the 500 teraflops machine will help NETL scientists undertake a broad range of energy and environmental research, with a focus on coal, natural gas and oil.

Growing concern over climate change has led many to reconsider our relationship with fossil fuels, which comprise nearly 60 percent of human-generated CO2 emissions. The reality is that for now, traditional energy sources continue to dominate US energy policy, but there are signs of change. The US Department of Energy (DOE) under the direction of outgoing-Secretary Steven Chu has pushed for an environmentally-sound, sustainable energy portfolio that includes alternative energy sources. It was Chu who set the stage for some of NETL’s most prominent programs, for example the Simulation-Based Engineering User Center (SBEUC) and the Carbon Capture Simulation Initiative (CCSI).

As a Department of Energy lab, NETL supports the DOE’s mission to advance the national, economic, and energy security of the United States, mainly through a focus on fossil fuel resources. A glance at the lab’s key mandates – which include clean power, climate change mitigation, energy-efficiency and renewable energy – reveals an expanded awareness of today’s energy-related challenges. One of the ways that NETL contributes to climate change mitigation is by developing new methods for monitoring, capturing and sequestering greenhouse gases as directed by the President’s Global Climate Change Initiative. High-performance computing is essential to carrying out this research.

HPCwire spoke with Chris Guenther, director of NETL’s Computational Science Division to find out more about the new system. Mr. Guenther is responsible for the day-to-day management of NETL’s Simulation-Based Engineering User Center – where HPCEE is housed.

“Within the division what we try to do is develop physics-based models and methods and tools to accelerate the development and deployment of advanced technology to utilize our fossil energy resources,” says Guenther.

His team undertakes a wide range of modeling and simulation work at various scales, from molecules to devices to entire power plants.

HPCEE was commissioned to support the computational fluid dynamics and computational chemistry efforts underway at NETL. The SGI Rackable machine contains 24,192 2.6 gHz Intel Xeon E5-2670 cores with 48,384 GB of system memory in 1,512 computational nodes connected via Mellanox InfiniBand QDR. The architecture achieved 413.5 teraflops Rmax (Linpack) out of 503.2 teraflops peak, for an impressive theoretical efficiency of 82 percent.

NETL characterizes HPCEE as one of the most energy-efficient systems of its kind in the world, but that statement merits closer inspection. The half-petaflop supercomputer placed a respectable 55th on the latest TOP500 list. But on the Green500 list, which ranks top systems based on FLOPS per watt, the system finished in 403rd place – not exactly boast-worthy.

Where NETL can claim some green bragging rights is on the datacenter-side. HPCEE resides inside an SGI ICE Cube Air datacenter, which provides cooling and power with a PUE in the 1.03 to 1.06 range. It does so “out-of-the-box” – no special modifications were made to achieve this level of performance.

This low PUE reading means that only one percent of total electrical consumption goes toward cooling the equipment. NETL notes that the increased efficiency translates into an average annual savings of $450,000.

“The SGI Modular Data Center consists of a 1.1 MW transformer and utility/power center supporting two equipment aisles of 20 racks each,” says Guenther. “Three racks of storage and utility equipment, three racks of Mellanox trunk switches and 21 racks of compute nodes fill 27 of the available racks.”

Asked what the impetus was for a modular datacenter as opposed to a custom-built site, Guenther referenced a site study which showed that the external modular datacenter approach was more cost effective and quicker in terms of providing compute cycles to the Fossil Energy research staff. The purchase decision was based on a scoring system which put an emphasis on performance and efficiency, he reported.

Next >>

This 500-teraflops machine is a really big deal for NETL researchers and their partners. Up to now, the laboratory has gotten by with using many small computer clusters, but there were many days when users simply could not find available cores to do their work, notes Guenther. With an order of magnitude more computing power, scientists will have more cores available to them and they’ll be able to model extremely difficult problems, such as coal jet penetration into a gasifier.

NETL HPCEE supercomputerAs HPCEE comes online, they will start shutting down the other clusters except for one or two, adding to the overall energy savings.

While most of NETL’s funding and work is to support the Office of Fossil Energy, Guenther emphasizes an R&D portfolio that is “weighted heavily toward technology that is much more environmentally-friendly as well as the optimization of existing fossil energy devices.”

“Fossil energy gets a bad rap, but just about everything that we are doing is focusing on the environmental aspect of fossil energy,” he adds.

Underscoring this point, Guenther cites the innovative work of the Carbon Capture Simulation Initiative (CSSI), tasked with accelerating the development and deployment of sorbent-based CO2 capture. This NETL-led project just rolled out a suite of 21 computational tools and models aimed at new carbon capture technologies.

“Programs like this are the reason we have HPCEE,” says Guenther. “The high fidelity computational fluid dynamic modeling work that is part of the Carbon Capture Simulation Initiative will be done exclusively on this new system.”

sorbent pellets
Sorbent pellets developed by NETL prepared by Pressure Chemical Company

“There’s no commercial-scale sorbent-based carbon capture systems out there,” he continues. “We’re developing our own sorbents here at NETL from the ground up. We’re testing those; we’re modeling them in small reactors; we’re gaining confidence in our models that will allow us then to scale up these models, to actually look at the ability in the virtual world to do commercial-scale sorbent-based CO2 capture.”

For industry, sophisticated models like these are critical for reducing the risks associated with commercialization.

Combining innovative technology with an effective industry transfer mechanism is a winning strategy. NETL was just recognized by R&D Magazine for its work with sorbent pellets. The magazine considers this novel carbon capture technology among the 100 most technologically significant products to enter the marketplace within the past year.

The CCSI also helps quantify the uncertainty associated with a model’s prediction. “In this initiative, they’re conducting models at different length and time scales,” says Guenther. “At one end they’re doing process-level modeling, or the overall power-plant type modeling. At the other end, they’re doing very high-fidelity, kinetic models and CFD models that are very small length of time scales, and they’re coupling those different models together in a consistent fashion and they are propagating the uncertainty through these different length and time scales.”

NETL projects span the entire gamut of research stages. “We work with industry and other people on brand-new technology that has not hit the ground as well as technology that’s already out there that we are trying to optimize and/or improve,” says Guenther.

As an example of the former, the lab is exploring promising new technologies like chemical-looping, which offers the potential to generate electricity from coal with significantly less pollution and less cost. To do this, researchers are building models and gaining insight from a fundamental level using small experiments to help guide them.

And at the other end of the spectrum, NETL scientists are doing work with coal gasification, a technology that is more mature and which they have more experience with. This is an area where they are applying their models toward industry transfer and commercialization.

The HPCEE support staff are currently in the process of migrating over data, software and all the necessary tools for performing day-to-day simulations. They anticipate that the system will be production-ready by early Spring.

When HPCEE goes live, researchers from the five universities that are part of the NETL-Regional University Alliance – Carnegie Mellon, Penn State, the University of Pittsburgh, West Virginia University, and Virginia Tech – will also be able to access the supercomputer.


Related Articles

Steven Chu’s DOE Legacy: Big Science, Grand Challenges and Solyndra

New Computational Tools Help Carbon Capture Technologies

Clean Energy Conundrum: In Europe, Regulations Have Helped Create a “Golden Age Of Coal”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose primary use case is to support high IOPS rates to/from a scra Read more…

By John Russell

Lenovo to Debut ‘Neptune’ Cooling Technologies at ISC ‘18

June 19, 2018

Lenovo today announced a set of cooling technologies, dubbed Neptune, that include direct to node (DTN) warm water cooling, rear door heat exchanger (RDHX), and hybrid solutions that combine air and liquid cooling. Lenov Read more…

By John Russell

World Cup is Lame Compared to This Competition

June 18, 2018

So you think World Cup soccer is a big deal? While I’m sure it’s very compelling to watch a bunch of athletes kick a ball around, World Cup misses the boat because it doesn’t include teams putting together their ow Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

IBM Demonstrates Deep Neural Network Training with Analog Memory Devices

June 18, 2018

From smarter, more personalized apps to seemingly-ubiquitous Google Assistant and Alexa devices, AI adoption is showing no signs of slowing down – and yet, the hardware used for AI is far from perfect. Currently, GPUs Read more…

By Oliver Peckham

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This