Intel Launches ‘Knights Landing’ Phi Family for HPC, Machine Learning

By Tiffany Trader

June 21, 2016

From ISC 2016 in Frankfurt, Germany, this week, Intel Corp. launched the second-generation Xeon Phi product family, formerly code-named Knights Landing, aimed at HPC and machine learning workloads. The company had been shipping “Knights Landing” silicon to early customers for the last six months and was waiting to ramp up production before making the product generally available.

The window also gave OEMs time to complete their readiness, said Intel’s Charlie Wuischpard, vice president of the Data Center Group and general manager of High Performance Computing Platform Group, in a media pre-briefing. Those OEMs include the usual names: Cray, HPE, Lenovo, Dell and others.

The most distinguishing feature of the chip is that it’s a bootable host CPU — unlike its predecessor “Knights Corner,” which is a coprocessor that connects over PCIe. “We’re not just a specialized programming model,” said Intel’s General Manager, HPC Compute and Networking, Barry Davis in a hand-on technical demo held at ISC. “We’re the full IA programming model. There’s no PCIe bottleneck; there’s a limitation in the data that you can send back and forth from the host CPU to the accelerator or coprocessor and we removed that bottleneck.”

The “Knights Landing” Phi will be the first chip to offer an integrated fabric, Intel’s Omni-Path Architecture (OPA), in the package. “Knights Landing” also puts integrated on-package memory in a processor, which benefits memory bandwidth and overall application performance. A six-channel memory controller supports up to 384 GB of DDR4-2400 memory (~90GB/s sustained bandwidth). There are 36 PCI Express 3.0 lanes for connecting to PCIe coprocessors, PCIe SSDs or discrete graphics cards.

The second-generation Phi is based on an Intel Atom core (based on the Silvermont microarchitecture) with many HPC enhancements. The MIC (Many Integrated Cores) design fits 8 billion transistors on a die, using 14 nm process technology. The new Phi family introduces the AVX-512 instruction set, which will be available on future Xeon processors. Both the Phi and the Xeon are binary compatible and a benefit of this is that the optimizations that apply to one platform typically carry to the other, notes Intel.

Intel emphasizes that the Phi is designed to run any workload, any IA code. “There are workloads out there that are single thread that maybe benefit from higher frequency and fewer cores and of course you would run those on a Xeon but it doesn’t mean those applications won’t still run on a Xeon Phi,” said Wuischpard. “Some of our early customers are implementing an entire supercomputing cluster with Xeon Phi. Others are doing a mix of Xeon and Xeon Phi and there are a lot of configurations that are possible within a given system deployment.”

As previously announced, the Phi product family comes in three variants: a PCIe coprocessor form factor; a stand-alone CPU; and a stand-alone CPU with integrated Omni-Path fabric technology. The SKU stack that Intel is launching includes four parts with different core counts, frequencies, TDPs and price points.

There are three parts shipping now: the 68-core 7250 (1.4 Ghz), the 64-core 7230 (1.3 Ghz) and the 64-core 7210 (1.3 Ghz). The TDP on all of these is 215 watts. The top-bin part – the Xeon Phi 7290 – is the promised 72-core version. The $6,250 SKU runs at 1.5 Ghz and consumes 245 watts of power; it will not be available until September. Integrated fabric versions of all four parts will not be available until October. Powering the fabric will add another 15 watts to the TDP envelope. The coprocessor card will be available in the second half the year, according to Intel.

Intel KNL Phi SKU list

“You can think of it as the 7200-series Xeon processor,” said Wuischpard, “You’ll see that all of the memory is 16 GBs across the board. We had originally talked about having a richer matrix of SKUs that ranged from no in-package memory to 16 GB of memory and then across these ranges of performance and it just looked too busy and too complex, and in the end everyone wants that in-package memory so we decided to shrink the SKU stack and make it easier to understand. And it does make it easier from a manufacturing perspective.”

The Xeon 7290 is a premium product with a premium price. This is by design since it’s relatively low-yielding, according to Intel. “Most of our early customers and this includes the large research labs and institutions have really focused on the 7230 and the 7250 to get the best price/performance. And we expect the 7210 will be the more general purpose high-running part,” said Wuishpard, adding that it offers 85-90 percent of the performance at less than half the price of the top-end part.

The self-hosted Phi processor competes directly with Tesla GPUs from Nvidia with both products targeting HPC and machine learning and visualization. At its GTC16 event, NVIDIA announced the NVLink-based Pascal GPU. The NVLink point-to-point interconnect’s advantage is enabling data sharing at rates five to 12 times faster than traditional PCI Express Gen 3.0. Currently, the NVLink-based P100 is only available to customers who shell out the $129,000 for NVIDIA’s “deep learning supercomputer,” the DGX-1, but the standalone NVLink-based P100 is expected to hit production availability early 2017.

Intel talks about scalability as being a big difference between a GPU card and Xeon Phi. “With GPU cards, you can only put so many cards in a box,” says Intel’s Barry Davis. “Even with NV-LINK to connect those together, you are still limited in that scale. As you look at the Xeon Phi product line with implementations at thousands of nodes, scalability is a key part of this architecture, and that’s what the market needs today, whether you are talking about machine learning, deep learning or traditional modeling and simulation.”

When it comes to artificial intelligence and deep learning, Intel has published several initial benchmarks claiming performance improvements over GPUs on a number of machine learning workloads.

Intel KNL Phi deep learning-1400x

NVIDIA’s VP, Solutions Architecture and Engineering, Marc Hamilton, said he questions the benchmarks that Intel has released so far, noting that the claims relating to deep learning were done against older versions of GPUs (Kepler) using unoptimized versions of frameworks. [The benchmark breakdown was unavailable on Intel’s site as of press time.] Hamilton also said that the “Knights Landing” does not have the strong node capability of the GPU. NVIDIA GPUs currently scale to 8-way configurations, but the OS will support 16 (recall the K80 has two physical GPUs inside it and the OS will support 8 of these).

There’s also a performance difference between the second-generation Phi and the newest Tesla GPUs. The top bin Knights Landing Phi CPU delivers 3.46 teraflops of double-precision floating point performance. The Pascal P100 GPU for NVLink-optimized servers offers 5.3 teraflops of double-precision floating point performance, and the PCIe version supports 4.7 teraflops of double-precision.

One early customer who has already deployed a Knights Landing Phi-based system is the Texas Advanced Computing Center (TACC) at the University of Austin at Texas. TACC got the 508 node system – an interim step between Stampede 1 and Stampede 2 – up and running and benchmarked on LINPACK three days after receiving its racks.

TACC Director Dan Stanzione wryly commented that that is not his preferred timeframe, but the result was a 117th place ranking on the latest TOP500 with a LINPACK of 817.8 teraflops. “Obviously the software came up pretty quickly in order to make that happen,” said Stanzione.

“We finished all of our benchmarking,” he continued, “and we’re putting users on it this week and are running our first tutorial on Sunday here at ISC.” The system employs the top-bin-minus-1 68-core Xeon Phi 7250 processor and the Omni-Path fabric.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire