The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

By John Russell

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer in the sense there is no widely agreed-upon benchmark or reference architecture for comparing DL performance across systems. A group of researchers led by Tal Ben-Nun and Torsten Hoefler of ETH Zurich has set out to develop Deep500 – a benchmarking suite, reference architecture, and, yes, contest – to provide a meaningful assessment tool for deep learning capabilities on HPC platforms.

“We would like the community to establish good benchmarking practice for large-scale deep learning scientific computing workloads, while still taking the correctness of the end result (i.e., accuracy and generalization) into account,” Hoefler told HPCwire recently. “That is why we created Deep500. This benchmark should be insightful to HPC researchers and supercomputer vendors, but also to the users in computational science who use deep learning as an inference tool. We should thus avoid common pitfalls that accompany measuring performance alone.”

SC18 Papers Chair Torsten Hoefler with ETH Zurich. Image courtesy of SC18.

Hoefler and Ben-Nun have set up Deep500.org and organized a well-attended Deep500 BOF at SC18, which featured an expert panel, and served as further outreach to the HPC community. How quickly Deep500 will take shape is uncertain. The researchers are working with other prominent researchers from academia and industry; for example Satoshi Matsuoka, director of Riken Center for Computational Science, and Pradeep Dubey, Intel Fellow and director of Intel’s Parallel Computing Lab, were among the panelists.

Their idea is to create a useful tool not just a vanity trophy. That message came through in force when Matsuoka described in some detail the struggle his group faced in developing procurement criteria for Japan’s AI Bridging Cloud Infrastructure (ABCI) which is intended specifically to handle artificial intelligence workloads. (ABCI was number seven on the most recent Top500).

“If you ever procure a machine, the benchmark will have to be very precise, because if there is any wiggle room, people will cheat. I’m not blaming anyone. People will improvise. Find loopholes. This has always been an issue with benchmarks,” said Matsuoka at the BOF.

“The immediate next step in Deep500,” Ben-Nun told HPCwire, “is to construct a meta-review of how deep learning is used by the scientific community, so that the workload types and their properties are clear. We are organizing a monthly meeting with leading researchers and interested parties from the industry. The meetings are open and posted on the Deep500 website (https://www.deep500.org/). Following that, the next step is to establish a steering committee for the benchmark. It is imperative that we fix the ranking and metrics of the benchmark, as the community is undecided right now on several aspects of this benchmark. We intend to make considerable progress this year, reconvene at SC19.”

Ben-Nun and Hoefler suggest the HPC community response to the Deep500 concept has been positive; there is, they say, widespread recognition of the need for such a benchmark, but there are also significant challenges and differing views on how to solve them. Here are their thoughts on four prominent issues provided to HPCwire recently by email:

  • Appropriate Datasets. “First, public deep learning datasets originate from fields such as computer vision, and as an HPC community we must establish datasets that are relevant to scientific computing, including data types and dimensions. Second, image and speech processing datasets are fixed, which makes deep learning a strongly scaling problem and thus inherently limit a supercomputing benchmark, as well as fosters specialization of techniques to specific datasets. Therefore, we need to consider synthetically-generated, relevant datasets as well.”
  • Metrics. “As for metrics, there have been several opinions on the matter: is throughput the main ranking criterion, or is test accuracy and overall time-to-solution important? We are open to input from the community, and encourage anyone who is interested to join the meetings.”
  • Allowable Methods. “The next open question is the algorithms and methods we allow the competitors to use. This is especially important, since many of the recent advances in distributed deep learning relate to modifying the original synchronous SGD algorithm. Approaches such as gradient quantization, asynchrony, and sparsification currently dominate the field, as the robustness of deep learning still yields satisfactory results. Openness to different methods is important, but as traditional benchmarks measure hardware, they usually leave little room for changing the algorithm itself. To cope with this landscape it is important to know what kind of learning strategies are important for scientific computing and are used for learning at scale.”
  • Verification. “Last but not least is the issue of verification. How do we ensure that a result of the benchmark is correct? As opposed to HPL, HPCG, and Graph500, where the result is known, deep learning problems define loss functions and accuracy metrics, whose values vary due to the problem definition (stochasticity, datasets) and applied techniques. As evident in conferences such as NeurIPS (formerly NIPS), reproducibility is very important to the ML community, and we would like to guarantee it in Deep500.”

There are, of course, many (old and new) tests and datasets being used ad hoc to assess machine learning and deep learning capabilities of systems. Most are fairly narrow. One new effort – the MLPerf benchmark suite for assessing training and inference performance introduced last May – has attracted considerable support and recently released its first round of results (see HPCwire article, Nvidia Leads Alpha MLPerf Benchmarking Round.)

As you might expect the BOF conversation was wide-ranging; it covered everything from why such a benchmark is needed, what attributes it should encompass, to strategies for combating inevitable efforts to “beat” the test.

When Matsuoka suggested the new benchmark “should measure through-put and not time-to-solution” an audience member quickly challenged that idea; he recalled an earlier effort focused on throughput “but time-to-solution was so bad that everyone dropped it,” and added that the clever use of cache allowed cheating throughput. Matsuoka agreed but emphasized modern benchmarks need to be scalable for use on different size machines which can influence time to solution.

Clearly much work remains. Regardless, Deep500 efforts are forging ahead. Hoefler, Ben-Nun, and colleagues plan to post a new paper – A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning – quite soon (Jan. or Feb.) on arXiv, and they whetted the BOF audience appetite with the slide below.

Along with Hoefler and Ben-Nun, panelists included: Dubey; Todd Gamblin (Center for Applied Scientific Computing, Lawrence Livermore National Lab); Tom Gibbs (Nvidia); Thorsten Kurth (National Energy Research Scientific Computing Center, LBNL); Matsuoka; and Jidong Zhai (Tsinghua University). A few of the brief BOF presentations re available on the Deep500 website.

Much of the conversation covered familiar ground but all of it was fascinating. Besides discussion of what a new benchmark should include there were a few snapshots of current DL practices and expectation based on a literature search and a fairly recent NERSC’s ML user survey. Presented below are a few slides from BOF panelists (click on slides to enlarge).

CURRENT DL TRENDS FROM BEN-NUN/HOEFLER
Ben-Nun and Hoefler presented a few snapshots from their literature review – “more than 100 papers” – of DL practices. Perhaps not surprisingly, the GPU use jumped dramatically in the past few years and now dominate. You may also find their paper, Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, of interest. Below are three of their slides.

NERSC ML USER SURVEY
Kurth of reviewed results of NERSC’s ML user survey which shows and interesting mix of tools being used with most models still run on relatively few CPUs/GPUs. He emphasized the importance of using open exchange formats to accommodate the rapidly changing/evolving ML framework landscape. Here are three of Kurth’s slides.

WHAT’S NEEDED IN DL BENCHMARK – INTEL
Intel’s Dubey emphasized the need for developing a benchmark that scales well, includes TCO, and can act as a proxy for “real-world, forward-looking” applications. Below are four of his slides.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This