The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

By John Russell

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer in the sense there is no widely agreed-upon benchmark or reference architecture for comparing DL performance across systems. A group of researchers led by Tal Ben-Nun and Torsten Hoefler of ETH Zurich has set out to develop Deep500 – a benchmarking suite, reference architecture, and, yes, contest – to provide a meaningful assessment tool for deep learning capabilities on HPC platforms.

“We would like the community to establish good benchmarking practice for large-scale deep learning scientific computing workloads, while still taking the correctness of the end result (i.e., accuracy and generalization) into account,” Hoefler told HPCwire recently. “That is why we created Deep500. This benchmark should be insightful to HPC researchers and supercomputer vendors, but also to the users in computational science who use deep learning as an inference tool. We should thus avoid common pitfalls that accompany measuring performance alone.”

SC18 Papers Chair Torsten Hoefler with ETH Zurich. Image courtesy of SC18.

Hoefler and Ben-Nun have set up Deep500.org and organized a well-attended Deep500 BOF at SC18, which featured an expert panel, and served as further outreach to the HPC community. How quickly Deep500 will take shape is uncertain. The researchers are working with other prominent researchers from academia and industry; for example Satoshi Matsuoka, director of Riken Center for Computational Science, and Pradeep Dubey, Intel Fellow and director of Intel’s Parallel Computing Lab, were among the panelists.

Their idea is to create a useful tool not just a vanity trophy. That message came through in force when Matsuoka described in some detail the struggle his group faced in developing procurement criteria for Japan’s AI Bridging Cloud Infrastructure (ABCI) which is intended specifically to handle artificial intelligence workloads. (ABCI was number seven on the most recent Top500).

“If you ever procure a machine, the benchmark will have to be very precise, because if there is any wiggle room, people will cheat. I’m not blaming anyone. People will improvise. Find loopholes. This has always been an issue with benchmarks,” said Matsuoka at the BOF.

“The immediate next step in Deep500,” Ben-Nun told HPCwire, “is to construct a meta-review of how deep learning is used by the scientific community, so that the workload types and their properties are clear. We are organizing a monthly meeting with leading researchers and interested parties from the industry. The meetings are open and posted on the Deep500 website (https://www.deep500.org/). Following that, the next step is to establish a steering committee for the benchmark. It is imperative that we fix the ranking and metrics of the benchmark, as the community is undecided right now on several aspects of this benchmark. We intend to make considerable progress this year, reconvene at SC19.”

Ben-Nun and Hoefler suggest the HPC community response to the Deep500 concept has been positive; there is, they say, widespread recognition of the need for such a benchmark, but there are also significant challenges and differing views on how to solve them. Here are their thoughts on four prominent issues provided to HPCwire recently by email:

  • Appropriate Datasets. “First, public deep learning datasets originate from fields such as computer vision, and as an HPC community we must establish datasets that are relevant to scientific computing, including data types and dimensions. Second, image and speech processing datasets are fixed, which makes deep learning a strongly scaling problem and thus inherently limit a supercomputing benchmark, as well as fosters specialization of techniques to specific datasets. Therefore, we need to consider synthetically-generated, relevant datasets as well.”
  • Metrics. “As for metrics, there have been several opinions on the matter: is throughput the main ranking criterion, or is test accuracy and overall time-to-solution important? We are open to input from the community, and encourage anyone who is interested to join the meetings.”
  • Allowable Methods. “The next open question is the algorithms and methods we allow the competitors to use. This is especially important, since many of the recent advances in distributed deep learning relate to modifying the original synchronous SGD algorithm. Approaches such as gradient quantization, asynchrony, and sparsification currently dominate the field, as the robustness of deep learning still yields satisfactory results. Openness to different methods is important, but as traditional benchmarks measure hardware, they usually leave little room for changing the algorithm itself. To cope with this landscape it is important to know what kind of learning strategies are important for scientific computing and are used for learning at scale.”
  • Verification. “Last but not least is the issue of verification. How do we ensure that a result of the benchmark is correct? As opposed to HPL, HPCG, and Graph500, where the result is known, deep learning problems define loss functions and accuracy metrics, whose values vary due to the problem definition (stochasticity, datasets) and applied techniques. As evident in conferences such as NeurIPS (formerly NIPS), reproducibility is very important to the ML community, and we would like to guarantee it in Deep500.”

There are, of course, many (old and new) tests and datasets being used ad hoc to assess machine learning and deep learning capabilities of systems. Most are fairly narrow. One new effort – the MLPerf benchmark suite for assessing training and inference performance introduced last May – has attracted considerable support and recently released its first round of results (see HPCwire article, Nvidia Leads Alpha MLPerf Benchmarking Round.)

As you might expect the BOF conversation was wide-ranging; it covered everything from why such a benchmark is needed, what attributes it should encompass, to strategies for combating inevitable efforts to “beat” the test.

When Matsuoka suggested the new benchmark “should measure through-put and not time-to-solution” an audience member quickly challenged that idea; he recalled an earlier effort focused on throughput “but time-to-solution was so bad that everyone dropped it,” and added that the clever use of cache allowed cheating throughput. Matsuoka agreed but emphasized modern benchmarks need to be scalable for use on different size machines which can influence time to solution.

Clearly much work remains. Regardless, Deep500 efforts are forging ahead. Hoefler, Ben-Nun, and colleagues plan to post a new paper – A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning – quite soon (Jan. or Feb.) on arXiv, and they whetted the BOF audience appetite with the slide below.

Along with Hoefler and Ben-Nun, panelists included: Dubey; Todd Gamblin (Center for Applied Scientific Computing, Lawrence Livermore National Lab); Tom Gibbs (Nvidia); Thorsten Kurth (National Energy Research Scientific Computing Center, LBNL); Matsuoka; and Jidong Zhai (Tsinghua University). A few of the brief BOF presentations re available on the Deep500 website.

Much of the conversation covered familiar ground but all of it was fascinating. Besides discussion of what a new benchmark should include there were a few snapshots of current DL practices and expectation based on a literature search and a fairly recent NERSC’s ML user survey. Presented below are a few slides from BOF panelists (click on slides to enlarge).

CURRENT DL TRENDS FROM BEN-NUN/HOEFLER
Ben-Nun and Hoefler presented a few snapshots from their literature review – “more than 100 papers” – of DL practices. Perhaps not surprisingly, the GPU use jumped dramatically in the past few years and now dominate. You may also find their paper, Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, of interest. Below are three of their slides.

NERSC ML USER SURVEY
Kurth of reviewed results of NERSC’s ML user survey which shows and interesting mix of tools being used with most models still run on relatively few CPUs/GPUs. He emphasized the importance of using open exchange formats to accommodate the rapidly changing/evolving ML framework landscape. Here are three of Kurth’s slides.

WHAT’S NEEDED IN DL BENCHMARK – INTEL
Intel’s Dubey emphasized the need for developing a benchmark that scales well, includes TCO, and can act as a proxy for “real-world, forward-looking” applications. Below are four of his slides.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterized as transforming data into insights – which is exactly wh Read more…

By James Reinders

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This