The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

By John Russell

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer in the sense there is no widely agreed-upon benchmark or reference architecture for comparing DL performance across systems. A group of researchers led by Tal Ben-Nun and Torsten Hoefler of ETH Zurich has set out to develop Deep500 – a benchmarking suite, reference architecture, and, yes, contest – to provide a meaningful assessment tool for deep learning capabilities on HPC platforms.

“We would like the community to establish good benchmarking practice for large-scale deep learning scientific computing workloads, while still taking the correctness of the end result (i.e., accuracy and generalization) into account,” Hoefler told HPCwire recently. “That is why we created Deep500. This benchmark should be insightful to HPC researchers and supercomputer vendors, but also to the users in computational science who use deep learning as an inference tool. We should thus avoid common pitfalls that accompany measuring performance alone.”

SC18 Papers Chair Torsten Hoefler with ETH Zurich. Image courtesy of SC18.

Hoefler and Ben-Nun have set up Deep500.org and organized a well-attended Deep500 BOF at SC18, which featured an expert panel, and served as further outreach to the HPC community. How quickly Deep500 will take shape is uncertain. The researchers are working with other prominent researchers from academia and industry; for example Satoshi Matsuoka, director of Riken Center for Computational Science, and Pradeep Dubey, Intel Fellow and director of Intel’s Parallel Computing Lab, were among the panelists.

Their idea is to create a useful tool not just a vanity trophy. That message came through in force when Matsuoka described in some detail the struggle his group faced in developing procurement criteria for Japan’s AI Bridging Cloud Infrastructure (ABCI) which is intended specifically to handle artificial intelligence workloads. (ABCI was number seven on the most recent Top500).

“If you ever procure a machine, the benchmark will have to be very precise, because if there is any wiggle room, people will cheat. I’m not blaming anyone. People will improvise. Find loopholes. This has always been an issue with benchmarks,” said Matsuoka at the BOF.

“The immediate next step in Deep500,” Ben-Nun told HPCwire, “is to construct a meta-review of how deep learning is used by the scientific community, so that the workload types and their properties are clear. We are organizing a monthly meeting with leading researchers and interested parties from the industry. The meetings are open and posted on the Deep500 website (https://www.deep500.org/). Following that, the next step is to establish a steering committee for the benchmark. It is imperative that we fix the ranking and metrics of the benchmark, as the community is undecided right now on several aspects of this benchmark. We intend to make considerable progress this year, reconvene at SC19.”

Ben-Nun and Hoefler suggest the HPC community response to the Deep500 concept has been positive; there is, they say, widespread recognition of the need for such a benchmark, but there are also significant challenges and differing views on how to solve them. Here are their thoughts on four prominent issues provided to HPCwire recently by email:

  • Appropriate Datasets. “First, public deep learning datasets originate from fields such as computer vision, and as an HPC community we must establish datasets that are relevant to scientific computing, including data types and dimensions. Second, image and speech processing datasets are fixed, which makes deep learning a strongly scaling problem and thus inherently limit a supercomputing benchmark, as well as fosters specialization of techniques to specific datasets. Therefore, we need to consider synthetically-generated, relevant datasets as well.”
  • Metrics. “As for metrics, there have been several opinions on the matter: is throughput the main ranking criterion, or is test accuracy and overall time-to-solution important? We are open to input from the community, and encourage anyone who is interested to join the meetings.”
  • Allowable Methods. “The next open question is the algorithms and methods we allow the competitors to use. This is especially important, since many of the recent advances in distributed deep learning relate to modifying the original synchronous SGD algorithm. Approaches such as gradient quantization, asynchrony, and sparsification currently dominate the field, as the robustness of deep learning still yields satisfactory results. Openness to different methods is important, but as traditional benchmarks measure hardware, they usually leave little room for changing the algorithm itself. To cope with this landscape it is important to know what kind of learning strategies are important for scientific computing and are used for learning at scale.”
  • Verification. “Last but not least is the issue of verification. How do we ensure that a result of the benchmark is correct? As opposed to HPL, HPCG, and Graph500, where the result is known, deep learning problems define loss functions and accuracy metrics, whose values vary due to the problem definition (stochasticity, datasets) and applied techniques. As evident in conferences such as NeurIPS (formerly NIPS), reproducibility is very important to the ML community, and we would like to guarantee it in Deep500.”

There are, of course, many (old and new) tests and datasets being used ad hoc to assess machine learning and deep learning capabilities of systems. Most are fairly narrow. One new effort – the MLPerf benchmark suite for assessing training and inference performance introduced last May – has attracted considerable support and recently released its first round of results (see HPCwire article, Nvidia Leads Alpha MLPerf Benchmarking Round.)

As you might expect the BOF conversation was wide-ranging; it covered everything from why such a benchmark is needed, what attributes it should encompass, to strategies for combating inevitable efforts to “beat” the test.

When Matsuoka suggested the new benchmark “should measure through-put and not time-to-solution” an audience member quickly challenged that idea; he recalled an earlier effort focused on throughput “but time-to-solution was so bad that everyone dropped it,” and added that the clever use of cache allowed cheating throughput. Matsuoka agreed but emphasized modern benchmarks need to be scalable for use on different size machines which can influence time to solution.

Clearly much work remains. Regardless, Deep500 efforts are forging ahead. Hoefler, Ben-Nun, and colleagues plan to post a new paper – A Modular Benchmarking Infrastructure for High-Performance and Reproducible Deep Learning – quite soon (Jan. or Feb.) on arXiv, and they whetted the BOF audience appetite with the slide below.

Along with Hoefler and Ben-Nun, panelists included: Dubey; Todd Gamblin (Center for Applied Scientific Computing, Lawrence Livermore National Lab); Tom Gibbs (Nvidia); Thorsten Kurth (National Energy Research Scientific Computing Center, LBNL); Matsuoka; and Jidong Zhai (Tsinghua University). A few of the brief BOF presentations re available on the Deep500 website.

Much of the conversation covered familiar ground but all of it was fascinating. Besides discussion of what a new benchmark should include there were a few snapshots of current DL practices and expectation based on a literature search and a fairly recent NERSC’s ML user survey. Presented below are a few slides from BOF panelists (click on slides to enlarge).

CURRENT DL TRENDS FROM BEN-NUN/HOEFLER
Ben-Nun and Hoefler presented a few snapshots from their literature review – “more than 100 papers” – of DL practices. Perhaps not surprisingly, the GPU use jumped dramatically in the past few years and now dominate. You may also find their paper, Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, of interest. Below are three of their slides.

NERSC ML USER SURVEY
Kurth of reviewed results of NERSC’s ML user survey which shows and interesting mix of tools being used with most models still run on relatively few CPUs/GPUs. He emphasized the importance of using open exchange formats to accommodate the rapidly changing/evolving ML framework landscape. Here are three of Kurth’s slides.

WHAT’S NEEDED IN DL BENCHMARK – INTEL
Intel’s Dubey emphasized the need for developing a benchmark that scales well, includes TCO, and can act as a proxy for “real-world, forward-looking” applications. Below are four of his slides.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago and a computer scientist at Argonne National Laboratory, as s Read more…

PEARC21 Plenary Session: AI for Innovative Social Work

July 21, 2021

AI analysis of social media poses a double-edged sword for social work and addressing the needs of at-risk youths, said Desmond Upton Patton, senior associate dean, Innovation and Academic Affairs, Columbia University. S Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participants in the Scientific Research Enabled by CS-1 Systems panel Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

ExaWind Prepares for New Architectures, Bigger Simulations

July 10, 2021

The ExaWind project describes itself in terms of terms like wake formation, turbine-turbine interaction and blade-boundary-layer dynamics, but the pitch to the Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire