Ten Great Reasons to Build the 1.5 Exaflops Frontier

By John Russell

May 7, 2019

It’s perhaps obvious that the fundamental reason for building expensive exascale computers is to drive science and industry forward, realizing the resulting benefits will ripple through society. Helping to ensure that happens is the non-trivial task of the U.S. Exscale Computing Project (ECP) whose mission is to foster development of the exascale-ready software ecosystem including science applications required. At today’s announcement of plans to build the $600 million, 1.5 exaflops Frontier supercomputer at Oak Ridge National Laboratory, organizers also presented a glimpse into some of the science Frontier may tackle.

Amitava-Bhattacharjee, Princeton Plasma Lab

Project organizers asked ten ECP project leaders to describe what they hoped to accomplish with Frontier’s exascale power. One of them is Amitava Bhattacharjee of the Princeton Plasma Physics Laboratory and PI for ECP’s WDMApp (Whole Device Modeling of Magnetically Confined Fusion Plasma).

He noted, “A whole-device computer model can offer insights about the plasma processes that go on in the fusion device and predictions regarding the performance and optimization of next-step experimental facilities. Using Frontier, we will be able to add new capabilities to the whole-device model, including the effects of the plasma boundary, the effects of fusion products, the influence of sources of heating, and the superimposed engineering structure that would make a fusion reactor operate as a unit.”

The goal of delivering safe, abundant, cheap energy from fusion is just one of many challenges in which exascale computing’s power may prove decisive. That’s the hope and expectation.

Presented below are quotes from nine more ECP PIs on their expectations for putting Frontier to use. (For details of the machine itself, whose construction is being led by partners Cray and AMD, see HPCwire’s article today, Cray, AMD to Extend DOE’s Exascale Frontier, written by Tiffany Trader.)

Additive Manufacturing. John Turner, ORNL and PI for ExaAM (Transformative Additive Manufacturing), ECP: “The thing that’s really attractive about Frontier is the powerful nodes. Having fewer powerful nodes with a very tightly integrated set of CPUs and GPUs at the node-level gives us the ability to distribute hundreds or thousands of microstructure and property calculations on one or a few nodes across the machine. With Frontier, we’re going to be able to predict the microstructure and properties of an additively manufactured part at much higher fidelity and in many more locations within a part than we are able to even with the world’s current fastest supercomputers.”

Materials Science. Danny Perez, Los Alamos National Laboratory and PI for EXAALT (Molecular Dynamics at Exascale for Materials Science), ECP: “Studying materials at exascale could have a significant impact on our world, because materials show up everywhere in the economy. Using a combination of advanced methods and scalable codes on Frontier, we’ll be able to perform simulations with potential millionfold increases in our time scales. We’ll also be able to do one-to-one comparisons with experiments and make better predictions about the evolution of these systems.”

Jacqueline Chen, Sandia National Laboratory

Combustion Efficiency. Jacqueline Chen, Sandia National Laboratories and PI for Combustion-Pele, ECP: “Combustion systems are projected to dominate the energy marketplace for decades to come. One engine concept—a low-temperature, reactivity-controlled, compression ignition engine— has the potential to deliver groundbreaking efficiencies of up to 60 percent while reducing emissions. On Frontier, we anticipate using high-fidelity simulations with machine learning and A.I. to model the underlying processes of this promising engine.”

Cosmology. Salman Habib, Argonne National Laboratory and PI for ExaSky (Computing the Sky at Extreme Scales), ECP: “Exascale will enable cosmology simulations large enough to model the distribution of billions of galaxies but also fine-grained enough to compare to a range of ground- and satellite-based observations, such as cosmic microwave background measurements and radio, optical, and xray data sets. At the same time, Frontier’s AI-oriented technology will enable us to analyze data from simulations in ways we simply can’t today.”

Software Technology. Mike Heroux, Sandia National Laboratories and Director, Software Technology, ECP: “ECP Software Technology is excited to be a part of preparing the software stack for Frontier. We are already on our way, using Summit and Sierra as launching pads. Working with OLCF, Cray, and AMD, we look forward to providing the programming environments and tools, and math, data and visualization libraries that will unlock the potential of Frontier for producing the countless scientific achievements we expect from such a powerful system. We are privileged to be part of the effort.”

Andreas Kronfield, Fermilab

Quantum Physics. Andreas Kronfeld, Fermilab and PI for Lattice QCD, ECP: “Exascale computing will be essential to precisely illuminating phenomena that emerge from neutrino physics experiments and maintaining the superb cross talk that has existed between the quantitative and the qualitative sides of discoveries in particle and nuclear physics. We anticipate that Frontier will provide the compute power and, just as important, the architecture for computation we must have to do our complicated, difficult calculations.”

Energy Application. Tom Evans, ORNL and Technical Lead for the Energy Applications Focus Area, ECP: “We are approaching a revolution in how we can design and analyze materials. We can look and carefully characterize the electronic structure of fairly simple atoms and very simple molecules right now. But with exascale computing on Frontier, we’re trying to stretch that to molecules that consist of thousands of atoms. The more we understand about the electronic structure, the more we’re able to actually manufacture and use exotic materials for things like very small, high tensile strength materials and buildings to make them more energy efficient. At the end of the day, everything in some sense comes down to materials.”

Grand Challenges. Andrew Siegel, Argonne National Laboratory and Director of Application Development Director, ECP: “At the inception of the ECP project we asked researchers to imagine new frontiers in science and engineering enabled by exascale computing. With Frontier, we have the opportunity now to fully realize our original vision, solving grand challenge problems that lead to breakthroughs in areas of energy generation, materials design, earth and space sciences, and related fields of physics and engineering.”

Laser Research. Amedeo Perazzo, SLAC National Accelerator Laboratory and PI for ExaFEL, ECP: “Free-electron X-ray laser facilities, such as the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory, produce ultrafast pulses from which scientists take stop- action pictures of moving atoms and molecules for research in physics, chemistry, and biology. For example, LCLS will be able to reconstruct biological structures in unprecedented atomic detail under physiological conditions. We foresee that access to Frontier will enable the LCLS users to achieve not only higher resolution and significantly deeper scientific insight than are possible today but also a dramatically increased image reconstruction rate for the delivery of information in minutes rather than weeks.”

Visit the Frontier website to read Q&As with these and other scientists conducting high impact research and preparing next-generation DOE applications for exascale.

There will of course be many more projects seeking and obtaining time on Frontier. Through its Center for Accelerated Application Readiness (CAAR), the OLCF will partner with simulation, data-intensive,and machine learning application teams consisting of application core developers and OLCF staff members. “CAAR partnership project proposals, accepted now through June 8, will be evaluated by a computational and scientific review conducted by the OLCF. In addition to gauging the scientific merit and acceleration plan of each proposal, the committee will strive to select a mix of computational algorithms and programming approaches representing a broad range of scientific disciplines,” reports ECP.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Dark Matter, Arrhythmia, Sustainability & More

February 28, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Microsoft Announces General Availability of AMD-backed Azure HBv2 Instances for HPC

February 27, 2020

Nearly seven months after they were first announced, Microsoft Azure’s HPC-targeted HBv2 virtual machines (VMs) based on AMD second-generation Epyc processors are ready for primetime. The new VMs, which Azure claims of Read more…

By Staff report

Sequoia Decommissioned, Making Room for El Capitan

February 27, 2020

After eight years of service, Sequoia has been felled. Once the most powerful publicly ranked supercomputer in the world, Sequoia – hosted by Lawrence Livermore National Laboratory (LLNL) – has been decommissioned to Read more…

By Oliver Peckham

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Blue Waters Supercomputer Helps Tackle Pandemic Flu Simulations

February 26, 2020

While not the novel coronavirus that is now sweeping across the world, the 2009 H1N1 flu pandemic (pH1N1) infected up to 21 percent of the global population and killed over 200,000 people. Now, a team of researchers from Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Micron Accelerator Bumps Up Memory Bandwidth

February 26, 2020

Deep learning accelerators based on chip architectures coupled with high-bandwidth memory are emerging to enable near real-time processing of machine learning algorithms. Memory chip specialist Micron Technology argues t Read more…

By George Leopold

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

NOAA Lays Out Aggressive New AI Strategy

February 24, 2020

Roughly coincident with last week’s announcement of a planned tripling of its compute capacity, the National Oceanic and Atmospheric Administration issued an Read more…

By John Russell

New Supercomputer Cooling Method Saves Half-Million Gallons of Water at Sandia National Laboratories

February 24, 2020

A new cooling method for supercomputer systems is picking up steam – literally. After saving millions of gallons of water at a National Renewable Energy Laboratory (NREL) datacenter, this innovative approach, called... Read more…

By Oliver Peckham

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This