Berkeley Lab’s John Shalf Ponders the Future of HPC Architectures

By Kathy Kincade

June 27, 2019

Editor’s note: Ahead of John Shalf’s well-attended and well-received “high-bandwidth” keynote at ISC 2019, Shalf discussed the talk’s major themes in an interview with Berkeley Lab’s Kathy Kincade. 

What will scientific computing at scale look like in 2030? With the impending demise of Moore’s Law, there are still more questions than answers for users and manufacturers of HPC technologies as they try to figure out what their next best investments should be. As he prepared to head to ISC19 in Frankfurt, Germany, to give a keynote address on the topic, John Shalf – who leads the Computer Science Department in Lawrence Berkeley National Laboratory’s Computational Research Division – shared his thoughts on what the future holds for computing technologies and architectures in the era beyond exascale. ISC took place June 16-20; Shalf’s keynote was on Tuesday, June 18.

What was the focus of your keynote at ISC?

What the landscape of computing, in general, is going to look like after the end of Moore’s Law. We’ve come to depend on Moore’s Law and to really expect that every generation of chips will double the speed, performance, and efficiency of the previous generation. Exascale will be the last iteration of Moore’s Law before the bottom drops out – and the question then is, how do we continue? Is exascale the last of its kind, or are we going to embark on a first-of-its-kind machine for the future of computing?

How long have you been thinking/talking about what’s next for HPC after Moore’s Law?

Where we are now is really the second shoe dropping. I got involved in the Exascale Computing Initiative discussions back in 2008, but actually, my interest in this predates exascale. Back in 2005, David Patterson’s group at UC Berkeley was talking about it in the Parallel Computing Laboratory, and we spent two years there in discussion and debate about the end of  Dennard’s scaling. Ultimately we published “The Landscape of Parallel Computing Research: A View from Berkeley,” which was the prediction that parallel computing would become ubiquitous on account of clock frequencies no longer scaling at exponential rates. This was followed closely by the DARPA 2008 Exascale report that set the stage for the Exascale Initiative for HPC. So the end of Dennard’s scaling was the first shoe to drop, but we always knew that the second shoe would drop fairly soon after the first. And the second shoe dropping means we can’t shrink transistors at all anymore, and that is the real end of Moore’s Law. Exascale is addressing the mass parallelism from the first shoe dropping, and I’ve been concerned about the second shoe dropping during the entire 10-year ramp-up to the Exascale Computing Initiative and subsequent Project, as were many others who were involved in writing the View from Berkeley report and the DARPA 2008 report.

How is the slowing of Moore’s Law already affecting HPC technologies and the industry itself?

We are seeing already procurement cycles stretching out so that the replacement of machines is happening at a slower pace than it has historically. Eric Strohmaier at Berkeley Lab has been tracking the replacement rate on the TOP500 very closely, and he has seen a noticeable slowdown in system replacement rates. I’ve also heard from our colleagues in industry that this is a troubling development that will affect their business model in the future. But we are also seeing these effects in the mega datacenter space, such as Google, Facebook, and Amazon. Google has actually taken to designing its own chips, specialized for particular parts of their workflow, such as the Tensor Processing Unit (TPU). We will probably see even more specialization in the future, but how this applies to HPC is less clear at this point – and that’s what I would like to get people thinking about during my keynote.

Is the lithography industry experiencing a parallel paradigm shift?

Yes, the lithography industry is also being affected, and something’s going to need to change in the economics for that industry. What we have seen in the past decade is that we’ve gone from nearly a dozen leading-edge fabs down to two. Global Foundries recently dropped out as a leading-edge fab, and Intel has had a huge amount of trouble getting its 10nm fab line off the ground. So clearly there are huge tectonic shifts happening in the lithography market as we speak, and how that will resolve itself ultimately remains unclear.

Do we have to start imagining an entirely new computing technology development and production process?

I think the way in which we select and procure systems is going to have to be revisited. While using user application codes to run benchmarks to assess the performance and usability of emerging systems is a great way for us to select systems today that use general purpose processors, it doesn’t seem to be a very good approach for selecting systems that might have specialized features for science. In the future, we need to be more closely involved in the design of the machines with our suppliers to deliver machines that are truly effective for scientific workloads. This is as much about sustainable economic models as it is a change in the design process. The most conventional or even the most technologically elegant solution might not survive, but the one that makes a lot of money will. But our current economic model is breaking.

Looking ahead, I see three paths going forward. The first is specialization and better packaging – specialization meaning designing a machine for a targeted class of applications. This has already been demonstrated in the successful case of the Google TPU, for example. So that is the most immediate path forward.

Another potential path forward is new transistor technology that replaces CMOS that is much more energy efficient and scalable. However, we know from past experience that it takes about 10 years to get from a lab demo to a production product. There are promising candidates, but no clear replacements demonstrated in the lab, which means we are already 10 years too late for that approach to be adopted by time Moore’s Law fails. We need to dramatically accelerate the discovery process in that area through a much more comprehensive materials-to-systems co-design process.

The third approach is to explore alternative models of computation such as quantum and neuromorphic and other, related approaches. These are all fantastic, but they are really expanding computing into areas where digital computing performs very poorly. They aren’t necessarily replacement technologies for digital general purpose computing; they are merely expanding into areas where digital isn’t very effective to start with. So I think these are worthy investments, but they aren’t the replacement technology. They will have a place, but how broadly applicable they will be is still being explored.

What about the development of new chip materials – what role might they play in the future of HPC architectures?

New materials are definitely part of the CMOS replacement. It’s not just new materials; fundamental breakthroughs in solid-state physics will be required to create a suitable CMOS replacement. The fundamental principle of operation for existing transistor technology cannot be substantially improved beyond what we see today. So to truly realize a CMOS replacement will require a new physical principle for switching, whether electrical, optical, or magnetic switching. A fundamentally new physical principle will need to be discovered and that, in turn, will require new materials and new material interfaces to realize effective and manufacturable solutions.

Are there any positives when you look at what is happening in this field right now?

Yes, definitely there are positives. We believe the co-design processor is going to require not just software and hardware people to collaborate, it is going to require this collaboration to go all the way down into the materials and materials physics level. And for the national laboratories, this is a great opportunity for us to work closely with our colleagues in the materials science divisions of our respective laboratories. I work at a national laboratory because I’m excited by cross-disciplinary collaboration, and clearly, that is the only way we are going to make forward progress in this area. The recent ASCR Extreme Heterogeneity and DOE Microelectronics BRNs show strong interest by DOE in this deep co-design and collaborative research that is really needed in this space. So to that extent, it is kind of an exciting time.

When you think about the future of HPC and supercomputing architectures and technologies, what do you imagine they will look like 10 years from now?

I think we’re going to have smaller machines that are more effective for the workflows they target. For three decades we have become used to ever-growing, larger and larger machines, but that doesn’t seem to be the winning approach for creating effective science in the post-exascale and post-Moore era.

About the Author

Kathy Kincade is a science & technology writer and editor with the Berkeley Lab Computing Sciences Communications Group.

Article courtesy Berkeley Lab; Feature image credit: ISC High Performance.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ISC21 Cluster Competition Bracketology

June 18, 2021

For the first time ever, cluster competition experts have gathered together for an actual seeding reveal for the ISC21 Student Cluster Competition. What’s this, you ask? It’s where bona fide student cluster competi Read more…

OSC Enables On-Demand HPC for Automotive Engineering Firm

June 18, 2021

In motorsports, vehicle designers are constantly looking for the tiniest sliver of time to shave off through some clever piece of engineering – but as the low-hanging fruit gets snatched up, those advances are getting Read more…

PNNL Researchers Unveil Tool to Accelerate CGRA Development

June 18, 2021

Moore’s law is in decline due to the physical limits of transistor chips, putting an expiration date on a hitherto-perennial exponential trend in computing power – and leaving hardware developers scrambling to contin Read more…

TU Wien Announces VSC-5, Austria’s Most Powerful Supercomputer

June 17, 2021

Austria is getting a new top supercomputer: VSC-5, the latest iteration of the Vienna Scientific Cluster. The news was announced by VSC-5’s soon-to-be home, TU Wien (also known as the Vienna University of Technology). Read more…

Supercomputing Helps Advance Hydrogen Energy Research

June 16, 2021

Hydrogen energy has long remained an elusive target of the renewable energy industry, promising clean, carbon-free energy that would allow for rapid refueling, unlike current battery-based electric vehicles. Hydrogen-bas Read more…

AWS Solution Channel

Accelerating research and development for new medical treatments

Today, more than 290,000 researchers in France are working to provide better support and care for patients through modern medical treatment. To fulfill their mission, these researchers must be equipped with powerful tools. Read more…

FF4EuroHPC Initiative Highlights Results of First Open Call

June 16, 2021

EuroHPC is kicking into high gear, with seven of its first eight systems detailed – and one of them already operational. While the systems are, perhaps, the flashiest endeavor of the European Commission’s HPC effort, Read more…

TU Wien Announces VSC-5, Austria’s Most Powerful Supercomputer

June 17, 2021

Austria is getting a new top supercomputer: VSC-5, the latest iteration of the Vienna Scientific Cluster. The news was announced by VSC-5’s soon-to-be home, T Read more…

Catching up with ISC 2021 Digital Program Chair Martin Schulz

June 16, 2021

Leibniz Research Centre (LRZ)’s content creator Susanne Vieser interviews ISC 2021 Digital Program Chair, Prof. Martin Schulz to gain an understanding of his ISC affiliation, which is outside his usual scope of work at the research center and the Technical University of Munich. Read more…

Intel Debuts ‘Infrastructure Processing Unit’ as Part of Broader XPU Strategy

June 15, 2021

To boost the performance of busy CPUs hosted by cloud service providers, Intel Corp. has launched a new line of Infrastructure Processing Units (IPUs) that take Read more…

ISC Keynote: Glimpse into Microsoft’s View of the Quantum Computing Landscape

June 15, 2021

Looking for a dose of reality and realistic optimism about quantum computing? Matthias Troyer, Microsoft distinguished scientist, plans to do just that in his ISC2021 keynote in two weeks – Quantum Computing: From Academic Research to Real-world Applications. He notes wryly that classical... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers


10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from I Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

  • arrow
  • Click Here for More Headlines
  • arrow