LLNL, ANL and GSK Provide Early Glimpse into Cerebras AI System Performance

By John Russell

October 13, 2020

AI chip and systems startup Cerebras was one of many AI companies showcased at the AI Hardware Summit which concluded last week. Rather than dwell on its technology, which is widely known, Cerebras invited collaborators from Lawrence Livermore National Laboratory, Argonne National Laboratory and GlaxoSmithKline (GSK) to talk about their early work on Cerebras machines and future plans.

It was interesting for a change to hear of concrete activities involving one of the new class of emerging AI machines, and in Cerebras’s case, the activities were varied from nascent to quite far along.

First, some background. If you’re an AI watcher, no doubt Cerebras is a familiar name. Flush with cash and early customers, the Los Altos-based company has been an early success story. Its ‘chip’ – the wafer scale engine (WSE) – is enormous. It consumes 46,000 square millimeters of silicon and has 400,000 so-called Sparse Linear Algebra Compute (SLAC) cores with roughly 1.2 trillion transistors.

The cores are designed for sparse linear algebra primitives that underpin all neural network computation, says the company. The WSE also 18 gigabytes of on-chip memory, nine petabytes of memory bandwidth and 100 petabytes per sec of fabric bandwidth. Its big reveal took place at Hot Chips in 2019 (see HPCwire coverage).

Cerebras founder and CEO Andrew Feldman’s presentation included a slide showing the WSE next to Nvidia A100 GPU. “You (can) see our wafer scale engine. It’s the size of a dinner plate.” This is case where size clearly matters and the early users seem to agree. The WSE’s sheer size allows porting entire models, big models at that, onto the chip, which in combination with the design greatly reduces latency and speeds throughput.

Feldman was quick to emphasize Cerebras is a systems company – not a chip company – and as he put it, one wouldn’t build a Ferrari engine and put it in a Volkswagen. Cerebras’ first system is the CS-1, a 15 RU tall system (~26 inches) and you can get three in a standard rack, said Feldman (system specs).

The CS-1 system

The point of the panel was less a description of the Cerebras technology and more an effort to show the CS-1 being put to early, practical use. So: how’s it going?

LLNL Tackles Physics Simulation with CS-1

Let’s start with LLNL’s Livermore Computing Center (LCC). LCC already has substantial computing capabilities including its number two supercomputer, Lassen, which is an IBM-built system featuring Power9 CPUs, Nvidia V100s and InfiniBand fabric. It’s a 23-petaflops system with 44 racks that was #10 on the Top500 when first stood up and was #14 on the most recent Top500.

“So why am I here talking about Cerebras,” said Bronis de Supinski, CTO for LCC. “We have this vision for performing cognitive simulation using what we call a heterogeneous system architecture. Most supercomputers have the same node over and over. That is what the Lassen’s base architecture was. By adding the CS-1, we now have a volume that is specifically tuned and intended for running machine learning models.”

“We have integrated the CS-1 connecting it directly to Lassen on the InfiniBand fabric. I’d like to note our integration team has told me that siting was one of the smoothest sitings that they’ve been involved with, particularly for the first time a company has cited something on our machinery floor,” said de Supinski.

The goal is to build machine learning into physics simulations. “There’s a variety of places we can do this, from coordinating input to individual simulations, to the many time steps, or even very tightly integrated into the simulation and computing values that are used within every time step or every few time steps of the simulation. That’s what we’re looking to do,” he said.

Fast communication between the systems is critical. “Can we have the interaction between these different volumes of the system occur quickly enough? As we’ve already heard there’s quite a bit of bandwidth in and out of this system (CS-1). We’ve begun looking at this, and we’re actually building into a simulation called CRETIN[i] the ability to do some of the physics in every time step. What we’ve found is even though we need to ship a fairly large number of values into the CS-1 in order to bring back a fair number of values, that the inference happens quickly enough with the CS-1 that we can actually make this work,” said de Supinski.

“We’re also looking at additional things like being able to update models on the fly as we generate more data from other parts of the simulation, and also potentially running the detailed physics simulation to be able to have a more accurate model. Again, the capability the CS-1 provides us with being able to run these large-scale models is such that we believe that this will work,” he said.

GSK – It’s All About the Data Flood

By now, it’s a mantra that much of modern drug discovery is about sieving the data flood provided by modern experimental instruments. “To give you an illustration of the [problem], in the first quarter of this year, we generated more data than GSK had generated [during its] this entire 300-year history before. We need these AI methods to pull this data together to process it,” said Kim Branson, SVP, global head of AI and ML. “What’s happening in drug discovery is that AI methods can be used everywhere.”

Like most of biopharma, GSK has long relied heavily upon modern IT but only recently took a deep plunge into AI.

“Our AI team was established in 2019, and is currently distributed between San Francisco and London, our two main hubs, and Boston, Heidelberg, Philadelphia, and Tel Aviv. We [have] about 100 team members which means there’s a lot of people wanting a lot of CPU cycles. The unique nature of the problems we have, and the data sources and the size of the data sources led us to explore the world of custom deep learning silicon,” said Branson.

The rapid advance of functional genomics and the ability to sequence individual single cells, measuring the RNA and DNA content on those cells, is generating data at a massive scale. Moreover, the range of informatics being deployed – from varied statistical analysis to first-principle-like simulation – can all benefit from AI.

“We actually make predictions, we design experiments, we generate data, just purely to build a model and feed that back again. That’s our that’s a core tenet. We routinely feature [large and diverse] datasets such as medical images or pathology images,” said Branson noting Cerebras’s high data movement bandwidth was important.

Ease of use was also an issue. “When GSK was looking for novel computational platforms to really allow us to exploit the data we’re gathering, we did a survey of the custom computing landscape and Cerebras stood out as a company that actually had silicon you could use but more importantly also had a technological stack. That was also a key. They know how to take things in PyTorch and TensorFlow and actually deploy them,” Branson said.

ANL Gets Substantial Speedups with of CS-1

Argonne is one of the longest-term Cerebras collaborators. More generally, ANL is very active in AI research for the Department of Energy and has an active AI testbed on which ANL hopes to test as many different AI chips as it can. That said, ANL is actively using the CSI-1 on an array of ongoing projects, including recent COVID-19 research.

Rick Stevens

“We have over 100 AI projects at the lab,” said Rick Stevens, associate laboratory director for computing, environment and life sciences. “We’ve picked a couple of them to be our primary targets for working on the CS-1.” He briefly summarized four:

  • LIGO. “This is a project that’s working on gravity wave detection [and] is building models that are suited for AI processing, the data coming off of things like LIGO to look for subtle signals of gravity waves. The project has been ongoing for about a year and is making good progress and achieving good speed ups on the CS-1,” said Stevens.
  • Cancer Moonshot. “Probably our flagship project is cancer drug response prediction. This is a joint project between Argonne, the National Cancer Institute and collaborator institutions. We’ve been working on a series of models that run on the CS-1 predicting tumor response to drugs and these models are achieving speed ups of many hundreds of times on the CS-1 compared to our GPU baselines. We’re quite happy with these. These are models that are running on large scale machines across the different architectures,” Stevens said.
  • COVID-19. “We’re also doing generative molecular design. This program is really aimed at generating new molecules that could be used as drugs. We’ve been applying this to our work in COVID-19. It’s also related to our cancer work in other areas where we’re trying to rapidly search through large spaces of drug molecules to find [candidate] molecules that meet certain criteria. Again, we’re getting great speedups there.”
  • Dark Matter. “Finally, we have an active program in dark matter search. This is part of a large software activity, getting ready for the Large Synoptic Survey Telescope (LSST). With this application we’re trying to look for the signatures of halos around galaxies, the mass distributions that are indicative of dark matter halos. Gravitational lensing events are a classic example and we’re doing this both in simulated data and in observation,” he said.

One of the more interesting efforts by ANL is an early program to examine how easy it is (or isn’t) to use the CS-1.

“Most of our models are in TensorFlow, but some of them are coming in PyTorch. We feel pretty confident about the ease-of-use. This fall, [ANL director of data science and learning division] Ian Foster and I are opening up our CS-1 to about 35 graduate students who are coming in with a little bit of experience, but are going to be kind of fresh users. We’re going to use that [experience] to really kind of understand how easy it is for users to get on this machine and to build new models and to train.

“Now it’s still early in terms of the state of the software. There’s still layer types and features that we need and that we are collaborating on but the CS-1 is not that hard to use. If your teams are comfortable developing in TensorFlow or PyTorch, they’ll be right at home using this machine.”

ANL has more plans to aggressively use its CS-1. “Going forward, we have a large-scale program in AI for science at the lab and a rather novel strategy that we’re pursuing that will involve the CS-1 integrating advanced AI hardware with our laboratory robotic system [for] near-autonomous discovery in biology, chemistry, and materials science. So that’s what we’re looking forward to in the future. And we’re just extremely pleased with our collaboration,” said Stevens.

[i] CRETIN is a 1D, 2D, and 3D non-local thermodynamic equilibrium (NLTE) atomic kinetics/radiation transport code which follows the time evolution of atomic populations and photon distributions as radiation interacts with a plasma. It can provide detailed spectra for comparing with experimental diagnostics. https://wci.llnl.gov/simulation/computer-codes

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This