Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

By John Russell

November 20, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction.

The work by a team of researchers from China and the U.S.  – Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning – used a machine learning protocol while retaining rigorous ab initio accuracy. The authors and their affiliations are listed at the end of the article. Here’s an excerpt from their paper:

“We report that a machine learning-based simulation protocol (Deep Potential Molecular Dynamics), while retaining ab initio accuracy, can simulate more than 1 nanosecond-long trajectory of over 100 million atoms per day, using a highly optimized code (GPU DeePMD-kit) on the Summit supercomputer. Our code can efficiently scale up to the entire Summit supercomputer, attaining 91 PFLOPS in double precision (45.5% of the peak) and 162/275 PFLOPS in mixed-single/half precision.

“The great accomplishment of this work is that it opens the door to simulating unprecedented size and time scales with ab initio accuracy. It also poses new challenges to the next-generation supercomputer for a better integration of machine learning and physical modeling,” they write.

 

Not only is the work impressive on its own, but it has implication for the forthcoming of exascale machines. “The optimization strategy presented in this paper can also be applied to other many-core architectures. For example, it can be easily converted to the Heterogeneous-compute Interface for Portability (HIP) programming model to run on the next exascale supercomputer Frontier, which will be based on AMD GPUs,” wrote the researchers[i].

Frontier (at OLCF) is now expected to the first U.S. exascale system brought online.

In presenting the award, Bronis R. de Supinski, chair of the 2020 Gordon Bell Award committee and CTO of Lawrence Livermore National Laboratory, praised the innovative approach and said “The work achieved outstanding levels of performance on the summit supercomputer at Oak Ridge National Laboratory, in addition to showing that the overall approach significantly lowers time to solution for computationally demanding problems.”

It is best to read their paper directly. Here’s what the researchers say about their key contributions:

“To effectively harness the computing power offered by the heterogeneous system architecture of Summit, our goal is to migrate to GPUs almost all computational tasks and a significant amount of communication tasks. Due to the relatively limited size of the computational granularity in the DP model, a straightforward GPU implementation encounters many bottlenecks and is thus not efficient. As such, our main algorithmic innovations are the following:

  • We increase the computational granularity of DeePMD by introducing a new data layout for the neighbor list that avoids branching in the computation of the embedding matrix.
  • The elements in the new data structure of the neighbor list are compressed into 64-bit integers for more efficient GPU optimization of the customized TensorFlow operators.
  • We develop mixed-precision computation for the DP model. Computationally intensive tasks are performed with single or half precision without reducing the accuracy of the physical observables.”

This year there were six finalists for the Gordon Bell Prize each impressive in its own right. One ran a successful simulation Square Kilometer Array project to simulate its data processing workflow on Summit. The data flow for SKA will be immense. Another looked at accelerating graph-based datamining (also on Summit) with an eye towards scanning of bio-research literature and a third GBP finalist ran high-resolution weather simulations on Fugaku. Below are two slides from the team’s SC20 presentation and here is a link to the video.

Here are summaries of the other five Gordon Bell Prize finalists with links to their papers:

A 1024-member ensemble data assimilation with 3.5-km mesh global weather simulations

Numerical weather prediction (NWP) supports our daily lives. Weather models require higher spatiotemporal resolutions to prepare for extreme weather disasters and reduce the uncertainty of predictions. The accuracy of the initial state of the weather simulation is also critical; thus, we need more advanced data assimilation (DA) technology. By combining resolution and ensemble size, we have achieved the world’s largest weather DA experiment using a global cloud-resolving model and an ensemble Kalman filter method. The number of grid points was ~4.4 trillion, and 1.3 PiB of data was passed from the model simulation part to the DA part. We adopted a data-centric application design and approximate computing to speed up the overall system of DA. Our DA system, named NICAM-LETKF, scales to 131,072 nodes (6,291,456 cores) of the supercomputer Fugaku with a sustained performance of 29 PFLOPS and 79 PFLOPS for the simulation and DA parts, respectively. (link to paper)

Processing full-scale square kilometre array data on the summit supercomputer

This work presents a workflow for simulating and processing the full-scale low-frequency telescope data of the Square Kilometre Array (SKA) Phase 1. The SKA project will enter the construction phase soon, and once completed, it will be the world’s largest radio telescope and one of the world’s largest data generators. The authors used Summit to mimic an end-to-end SKA workflow, simulating a dataset of a typical 6 hour observation and then processing that dataset with an imaging pipeline. This workflow was deployed and run on 4,560 compute nodes, and used 27,360 GPUs to generate 2.6 PB of data. This was the first time that radio astronomical data were processed at this scale. Results show that the workflow has the capability to process one of the key SKA science cases, an Epoch of Reionization observation. This analysis also helps reveal critical design factors for the next-generation radio telescopes and the required dedicated processing facilities. (link to paper)

Toward realization of numerical towing-tank tests by wall-resolved large eddy simulation based on 32 billion grid finite-element computation

To realize numerical towing-tank tests by substantially shortening the time to the solution, a general-purpose Finite-Element flow solver, named FrontFlow/blue (FFB), has been fully optimized so as to achieve maximum possible sustained memory throughputs with three of its four hot kernels. A single-node sustained performance of 179.0 GFLOPS, which corresponds to 5.3% of the peak performance, has been achieved on Fugaku, the next flagship computer of Japan. A weak-scale benchmark test has confirmed that FFB runs with a parallel efficiency of over 85% up to 5,505,024 compute cores, and an overall sustained performance of 16.7 PFLOPS has been achieved. As a result, the time needed for large-eddy simulation using 32 billion grids has been significantly reduced from almost two days to only 37 min., or by a factor of 71. This has clearly indicated that a numerical towing-tank could actually be built for ship hydrodynamics within a few years. (link to paper)

Accelerating large-scale excited-state GW calculations on leadership HPC systems

Large-scale GW calculations are the state-of-the-art approach to accurately describe many-body excited-state phenomena in complex materials. This is critical for novel device design but due to their extremely high computational cost, these calculations often run at a limited scale. In this paper, we present algorithm and implementation advancements made in the materials science code BerkeleyGW to scale calculations to the order of over 10,000 electrons utilizing the entire Summit at OLCF. Excellent strong and weak scaling is observed, and a 105.9 PFLOP/s double-precision performance is achieved on 27,648 V100 GPUs, reaching 52.7% of the peak. This work for the first time demonstrates the possibility to perform GW calculations at such scale within minutes on current HPC systems, and leads the way for future efficient HPC software development in materials, physical, chemical, and engineering sciences. (link to paper)

Scalable knowledge graph analytics at 136 petaflop/s

We are motivated by newly proposed methods for data mining large-scale corpora of scholarly publications, such as the full biomedical literature, which may consist of tens of millions of papers spanning decades of research. In this setting, analysts seek to discover how concepts relate to one another. They construct graph representations from annotated text databases and then formulate the relationship-mining problem as one of computing all-pairs shortest paths (APSP), which becomes a significant bottleneck. In this context, we present a new high-performance algorithm and implementation of the Floyd-Warshall algorithm for distributed-memory parallel computers accelerated by GPUs, which we call dSnapshot (Distributed Accelerated Semiring All-Pairs Shortest Path). For our largest experiments, we ran dSnapshot on a connected input graph with millions of vertices using 4,096 nodes (24,576 GPUs) of the Oak Ridge National Laboratory’s Summit supercomputer system. We find dSnapshot achieves a sustained performance of 136×1015 floating-point operations per second (136 petaflop/s) at a parallel efficiency of 90% under weak scaling and, in absolute speed, 70% of the best possible performance given our computation (in the single-precision tropical semiring or “min-plus” algebra). Looking forward, we believe this novel capability will enable the mining of scholarly knowledge corpora when embedded and integrated into artificial intelligence-driven natural language processing workflows at scale. (link to paper)

[i] Authors for Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning: Weile Jia (UC Berkeley), Han Wang (Institute of Applied Physics and Computational Mathematics, Beijing), Mohan Chen (College of Engineering, Peking University), Denghui Lu (College of Engineering, Peking University), Lin Lin (UC Berkeley), Roberto Car (Princeton University), Weinan E (Princeton University), Linfeng Zhang (Princeton University)


Don’t forget to check our coverage of the winners and finalists for the 2020 Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Natcast/NSTC Issues Roadmap to Implement CHIPS and Science Act

May 29, 2024

Yesterday, CHIPS for America and Natcast, the operator of the National Semiconductor Technology Center (NSTC), released a roadmap of early steps for implementing portions of the ambitious $5 billion program. Natcast is t Read more…

Scientists Use GenAI to Uncover New Insights in Materials Science

May 29, 2024

With the help of generative AI, researchers from MIT and the University of Basel in Switzerland have developed a new machine-learning framework that can help uncover new insights about materials science. The findings of Read more…

Microsoft’s ARM-based CPU Cobalt will Support Windows 11 in the Cloud

May 29, 2024

Microsoft's ARM-based CPU, called Cobalt, is now available in the cloud for public consumption. Cobalt is Microsoft's first homegrown CPU, which was first announced six months ago. The cloud-based Cobalt VMs will support Read more…

2024 Winter Classic Finale! Gala Awards Ceremony

May 28, 2024

We wrapped up the competition with our traditional Gala Awards Ceremony. This was an exciting show, given that only 40 points or so separated first place from fifth place after the Google GROMACS Challenge and heading in Read more…

IBM Makes a Push Towards Open-Source Services, Announces New watsonx Updates

May 28, 2024

Today, IBM declared that it is releasing a number of noteworthy changes to its watsonx platform, with the goal of increasing the openness, affordability, and flexibility of the platform’s AI capabilities. Announced Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storage, throughput, and new computing technologies. This round Read more…

Scientists Use GenAI to Uncover New Insights in Materials Science

May 29, 2024

With the help of generative AI, researchers from MIT and the University of Basel in Switzerland have developed a new machine-learning framework that can help un Read more…

watsonx

IBM Makes a Push Towards Open-Source Services, Announces New watsonx Updates

May 28, 2024

Today, IBM declared that it is releasing a number of noteworthy changes to its watsonx platform, with the goal of increasing the openness, affordability, and fl Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storag Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC eve Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire