Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

By John Russell

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising platform for the implementation of quantum repeaters, quantum network, and networked quantum computation,” say the researchers in their paper published today in APS journal, Physical Review X.

During tests, the quantum memory stored 72 optical qubits — quantum bits of information analogous to the binary digits (bits) used in classical computing — and conducted 1,000 consecutive read-or-write operations in programmable style. The unit could also queue, stack, and buffer incoming information, which are three actions that classical computers rely on when interfacing with the internet. These results represent a performance two orders of magnitude larger than previous records for quantum memory.

The latest work is another step forward for quantum network development. Work on quantum memory and quantum networking has intensified recently with many approaches to quantum memory and repeater development underway. The Tsinghua researchers* note that substantial advances have been made for the realization of various quantum memories including photonic quantum memory with long coherence time based on atomic or spin ensembles, single atoms or ions, and single vacancy center (NV-vacancy).

The problem, they add, “To achieve a reasonable entangling rate over a metropolitan size of 100 km via the quantum repeater protocol, one has to combine long coherence time, large memory capacity, and high-fidelity operations altogether. Although there are demonstrations for each individual technique, how to make them compatible with each other and integrate all these elements into a single quantum memory setup remains a challenging goal in experiment.”

There are, of course, many groups racing to develop effective quantum networks. The U.S. Department of Energy, for example, issued a report, Building a Nationwide Quantum Internet, back in 2020. Lot’s of progress has been made and several cities have ongoing efforts, including, for example, Chicago, NYC, and Chattanooga. Likewise a few major cloud providers have similar efforts. For example, AWS has a center for quantum networking development, in Boston. Building effective and performant repeaters is one of the major challenges still impeding these efforts. (See HPCwire coverage, What’s Needed to Deliver the Nationwide Quantum Internet Blueprint.)

The Tsinghua University researchers’ approach promises to help overcome these challenges. Here’s the abstract from their paper (Realization of a programmable multi-purpose photonic quantum memory with over-thousand qubit manipulations):

“Quantum networks can enable various applications such as distributed quantum computing, long-distance quantum communication, and network-based quantum sensing with unprecedented performances. One of the most important building blocks for a quantum network is a photonic quantum memory which serves as the interface between the communication channel and the local functional unit. A programmable quantum memory which can process a large stream of flying qubits and fulfill the requirements of multiple core functions in a quantum network is still to-be-realized.

“Here we report a high-performance quantum memory which can simultaneously store 72 optical qubits carried by 144 spatially separated atomic ensembles and support up to a thousand consecutive write or read operations in a random access way, two orders of magnitude larger than the previous record. Due to the built-in programmability, this quantum memory can be adapted on-demand for several functions. As example applications, we realize quantum queue, stack, and buffer which closely resemble the counterpart devices for classical information processing. We further demonstrate the storage and reshuffle of 4 entangled pairs of photonic pulses with probabilistic arrival time and arbitrary release order via the memory, which is an essential requirement for the realization of quantum repeaters and efficient routing in quantum networks. Realization of this multi-purpose programmable quantum memory thus constitutes a key enabling building block for future large-scale fully-functional quantum networks.”

Bottom line: The photonic quantum memory implemented here is scalable, long-lived, fully-controllable, and combines unprecedented versatility, provides key enabling ingredients for the implementation of quantum repeaters and large-scale quantum networks.

Looking ahead, the researchers say, “In the future, it is possible to further improve the coherence time to over 0.1s and efficiency above 0.5 with much higher optical depth by loading the atoms into an optical lattice array, which will greatly improve the performance of photonic quantum logic. We can also exploit wavelength conversion techniques to achieve a quantum repeater network for long-distance communication. Finally, if in-memory quantum gates are further equipped via Rydberg interactions or spin superexchange, a nearly universal platform can be realized which will support the implementation of fully-connected quantum logic, error-corrected quantum network, or even a global quantum internet.”

As always, it’s best to read the paper directly.

Link to paper, https://journals.aps.org/prx/abstract/10.1103/PhysRevX.14.021018

Authors* Sheng Zhang,1 Jixuan Shi,1 Zhaibin Cui,1 Ye Wang,1 Yukai Wu,1, 2 Luming Duan,1, 2 , and Yunfei Pu1, 2 , 1Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China

2Hefei National Laboratory, Hefei 230088, PR China

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy with Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire