Steven Chu’s DOE Legacy: Big Science, Grand Challenges and Solyndra

By Tiffany Trader

February 5, 2013

US Energy Secretary Steven Chu oversaw the nation’s energy policy at one of the most politically divisive times in recent history. Last Friday he announced that he would step down from the job. As a big champion of Big Science and its potential to change the country’s economic and environmental landscape – with government aid – many people welcome the change while others are sad to see him go.

Both views are based on one fact: During his four-year term, Chu emphasized the role of science and technology funding in national innovation and competitiveness.

In many people’s view, his greatest achievement was bringing science back to the forefront of energy policy after years of neglect under previous administrations.

To others, his decision to provide $535 million in federal loan guarantees to Solyndra, a solar energy company that later went bankrupt, makes him the poster child for government misspending.

A physics professor, Nobel Prize winner, and Bell Labs investigator, Chu has always been a huge proponent of the transformative power of research.

President Obama praised Chu for his efforts to bring about that transformation. “Over the past four years we have doubled the use of renewable energy, reduced our dependence on foreign oil and put our country on a path to win the global race for clean-energy jobs,” the President said.

Chu pushed the idea that high performance computing should play a key role in overcoming today’s difficult energy challenges. As head of the DOE, he was responsible for some of the most powerful supercomputers in the world. DOE’s Office of Science makes supercomputers available to researchers who use them to simulate everything from the components of a proton to the mechanisms of an exploding star. At a 2010 summit in Washington, D.C., he asserted that the “the DOE strategy should be to make simulation part of everyone’s toolbox.”

In 1997, Chu, along with several Bell Lab colleagues, won the Nobel Prize in Physics for their work on laser cooling. An article at Quartz by Steve LeVine examines how Chu set out to recreate the prolific Bell Laboratory model in Washington using focused funding streams and strategic innovation centers.

Chu’s approach was multi-pronged. First, he created 46 Energy Frontier Research Centers (EFRCs), funded at $2-5 million per year per center for an initial five-year year. These integrated, multi-investigator centers, operated by the DOE Office of Science, target “grand challenge” problems in order to transform “the way we generate, supply, transmit, store, and use energy.”

“The EFRCs neatly fit the Bell mantra,” writes LeVine. “Give a group of talented scientists a specific objective, the freedom to solve it how they see fit, a reasonable sum to work with, and let them go to the task. They might fail spectacularly, but Bell thought that was also how they may succeed.”

Next >>

The second piece of Chu’s plan was to establish five Energy Innovation Hubs, each of which receive up to $125 million in funding over five years. Their mission, according to the DOE, is “to shorten the path from laboratory innovation to technological development, and lead the way toward American competitiveness, economic growth and energy security.” Researchers from different labs are simulating nuclear reactors, developing biofuels from sunlight, designing energy efficient buildings, advancing electrochemical energy storage, and enhancing the supply of critical energy materials.

Chu also oversaw the development of Advanced Research Projects Agency-Energy (ARPA-E), a DOE incubator project that was modeled after the Defense Department’s DARPA program. As Chu explains, “ARPA-E was designed to support high-risk, high reward technology development; to swing for game-changing home runs that can fundamentally transform energy technologies.”

Many people in science and industry have praised the program. In his ARPA-E Summit Keynote, FedEx founder and CEO Fred Smith characterized it as “the best government funding program” he had ever seen.

But not everybody was so happy with Chu’s approach to government/industry collaboration. Republicans launched withering attacks against his handling of the Solyndra loan program after the solar panel maker and four other government-funded energy companies went belly-up on his watch. Some of the comments upon his resignation have not been so kind.

“While many will remember Secretary Chu for his comments about the need to raise gas prices on American consumers and the high grades he publicly bestowed on himself,” said House Oversight and Government Reform Committee Chairman Darrell Issa in a statement, “I found taxpayer losses on projects like Solyndra and the department’s deeply misguided effort to use taxpayer dollars as an investment bank for unproven technologies to be the most problematic aspects of his legacy.”

Chu takes responsibility for these “failures” in his resignation letter, but insists there is a larger context. Innovation, he says, requires risk:

The test for America’s policy makers will be whether they are willing to accept a few failures in exchange for many successes. America’s entrepreneurs and innovators who are leaders in global clean energy race understand that not every risk can – or should – be avoided. Michelangelo said, “The greater danger for most of us lies not in setting our aim too high and falling short; but in setting our aim too low, and achieving our mark.”

It’s true the research beds that Chu established are still in their early years, but he believes that they will give life to the same kind of game-changing advances associated with Bell Labs and other legendary institutions. “Some of those goals have been realized, and we have planted many seeds together,” he said in his resignation letter. “Just as today’s boom in shale gas production was made possible by Department of Energy research from 1978 to 1991, some of [our] most significant work may not be known for decades. What matters is that our country will reap the benefits of what we have started.”

His final legacy will have to wait for those decades to pass and demonstrate whether or not his words prove true.

Related Articles

US Energy Secretary Talks Supercomputing

Steven Chu Announces the Scalable Data Management, Analysis, and Visualization Institute

Three DOE Labs Now Connected with Ultra-High Speed Network

Supercomputing Key to US Leadership

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Grace Hopper Gets Busy With Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance computing (HPC) will remain essential, even as many applicati Read more…

EuroHPC Expands: United Kingdom Joins as 35th Member

May 14, 2024

The United Kingdom has officially joined the EuroHPC Joint Undertaking, becoming the 35th member state. This was confirmed after the 38th Governing Board meeting, and it's set to enhance Europe's supercomputing capabilit Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire