IBM Debuts Power10; Touts New Memory Scheme, Security, and Inferencing

By John Russell

August 17, 2020

IBM today introduced its next generation Power10 microprocessor, a 7nm device manufactured by Samsung. The chip features a new microarchitecture, broad new memory support, PCIe Gen 5 connectivity, hardware enabled security, impressive energy efficiency, and a host of other improvements. Unveiled at the annual Hot Chips conference (virtual this year) Power10 won’t turn up in IBM systems until this time next year. IBM didn’t disclose when the chip would be available to other systems makers.

IBM says Power10 offers a ~3x performance gain and ~2.6x core efficiency gain over Power9. No benchmarks against non-IBM chips were presented. Power9, of course, was introduced in 2017 and manufactured by Global Foundries on a 14nm process. While the move to a 7nm process provides many of Power10’s gains, there are also significant new features, not least what IBM calls Inception Memory that allows Power10 to access up to “multi petabytes” of pooled memory from diverse sources.

“You’re able to kind of trick a system into thinking that memory in another system belongs to this system. It isn’t like traditional [techniques] and doing an RDMA over InfiniBand to get access to people’s memory. This is programs running on my computer [that] can do load-store-access directly, coherently,” said William Starke, IBM distinguished engineer and a Power10 architect in a pre-briefing. “They use their caches [to] play with memory as if it’s in my system, even if it’s bridged by a cable over to another system. If we’re using short-reach cabling, we can actually do this with only 50-to-100 nanoseconds of additional latency. We’re not talking adding a microsecond or something like you might have over and RDMA.”

IBM is promoting Inception as a major achievement.

“HP came out with their big thing a few years ago. They called it The Machine and it was going to be their way of revolutionizing things largely by disaggregating memory. Intel you’ve seen from their charts talking about their Rack Scale architectures [that] they’re evolving toward. Well, this is IBM’s version of this and we have it today, in silicon. We are announcing we are able to take things outside of the system and aggregate the multiple systems together to directly share memory,” said Starke.

Inception is just one of many interesting features of Power10, which has roughly 18 billion transistors. IBM plans to offer two core types – 4 SMT (simultanous multi-threaded) cores and 8 SMT cores; IBM focused on the latter in today’s presentation. There are 16 cores on the chip and on/offchip bandwidth via the OMI interface or PoweAXON (for adding OpenCAPI accelerators) or PCIe5 interface, all of which are shown delivering up to 1 terabyte per sec on IBM’s slides.

CXL interconnect is not supported by Power10, which is perhaps surprising given the increasingly favorable comments about CXL from IBM over the past year.

Starke said as part of a Slack conversation tied to Hot Chips, “Does POWER10 support CXL? No, it does not. IBM created OpenCAPI because we believe in Open, and we have 10+ years of experience in this space that we want to share with the industry. We know that an asymmetric, host-dominant attach is the only way to make these things work across multiple companies. We are encouraged to see the same underpinnings in CXL. It’s open. It’s asymmetric. So it’s built on the right foundations. We are CXL members and we want to bring our know-how into CXL. But right now, CXL is a few years behind OpenCAPI. Until it catches up, we cannot afford to take a step backwards. Right now OpenCAPI provides a great opportunity to get in front of things that will become more mainstream as CXL matures.”

Below is the block diagram of IBM’s new Power10 chip showing major architecture elements.

The process shrink does play role in allowing to IBM to offer two packaging options shown below (slide below).

“We’re offering two versions of the processor module and were able to do this primarily because of the energy efficiency gains,” said Starke. “We’re bringing out a single chip module. There is one Power10 chip and exposing all those high bandwidth interfaces, so very high bandwidth per compute type of characteristics. [O]n the upper right you can see [it]. We build a 16-socket, large system that’s very robustly scalable. We’ve enjoyed success over the last several generations with this type of offering, and Power10 is going to be no different.

“On the bottom you see something a little new. We can basically take two Power10 processor chips and cram them into the same form factor where we used to put just one Power9 processor. We’re taking 1200 square millimeters of silicon and putting it into the same form factor. That’s going to be very valuable in compute-dense, energy-dense, volumetric space-dense cloud configurations, where we can build systems ranging from one to four sockets where those are dual chip module sockets as shown there on the lower right,” he said.

It will be interesting to see what sort of traction the two different offerings gain among non-IBM systems builders as well as hyperscalers. Broadly IBM is positioning Power10 as a strong fit for hybrid cloud, AI, and HPC environments. Hardware and firmware enhancements were made to support security, containerization, and inferencing, with IBM pointedly suggesting Power10 will be able to handle most inferencing workflows as well as GPUs.

Talking about security, Satya Sharma, IBM Fellow and CTO, IBM Cognitive Systems, said “Power10 implements transparent memory encryption, which is memory encryption without any performance degradation. When you do memory encryption in software, it usually leads to performance degradation. Power10 implements transparent hardware memory encryption.”

Sharma cited similar features for containers and acceleration cryptographic standards. IBM’s official announcement says Power10 is designed to deliver hardware-enforced container protection and isolation optimized with the IBM firmware and that Power10 can encrypt data 40 percent faster than Power9.

IBM also reports Power10 delivers a 10x-to-20x advantage over Power9 on inferencing workloads. Memory bandwidth and new instructions helped achieve those gains. One example is a new special purpose-built matrix math accelerator that was tailored for the demands of machine learning and deep learning inference and includes a lot of AI data types.

Focusing for a moment on dense-math-engine microarchitecture, Brian Thompto, distinguished engineer and Power10 designer, noted, “We also focused on algorithms that were hungry for flops, such as the matrix math utilized in deep learning. Every core has built in matrix math acceleration and efficiently performs matrix outer product operations. These operations were optimized across a wide range of data types. Recognizing that various precisions can be best suited for specific machine learning algorithms, we included very broad support: double precision, single precision, two flavors of half-precision doing both IEEE and bfloat16, as well as reduced precision integer 16-, eight-, and four-bit. The result is 64 flops per cycle, double precision, and up to one K flops per cycle of reduced precision per SMT core. These operations were tailor made to be efficient while applying machine learning.

“At the socket level, you get 10 times the performance per socket for double and single-precision, and using reduced precision, bfloat16 sped up to over 15x and int8 inference sped up to over 20x over Power9,” Thompto added.

More broadly, he said, “We have a host of new capabilities in ISA version 3.1. This is the new instruction set architecture that supports Power10 and is contributed to the OpenPOWER Foundation. The new ISA supports 64-bit prefixed instructions in a risk-friendly way. This is in addition to the classic way that we’ve delivered 32-bit instructions for many decades. It opens the door to adding new capabilities such as adding new addressing modes as well as providing rich new opcode space for future expansion.”

Link to Hot Chips: https://www.hotchips.org

Link to IBM Blog: https://newsroom.ibm.com/Stephen-Leonard-POWER10

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers

Contributors

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This