IBM Debuts Power10; Touts New Memory Scheme, Security, and Inferencing

By John Russell

August 17, 2020

IBM today introduced its next generation Power10 microprocessor, a 7nm device manufactured by Samsung. The chip features a new microarchitecture, broad new memory support, PCIe Gen 5 connectivity, hardware enabled security, impressive energy efficiency, and a host of other improvements. Unveiled at the annual Hot Chips conference (virtual this year) Power10 won’t turn up in IBM systems until this time next year. IBM didn’t disclose when the chip would be available to other systems makers.

IBM says Power10 offers a ~3x performance gain and ~2.6x core efficiency gain over Power9. No benchmarks against non-IBM chips were presented. Power9, of course, was introduced in 2017 and manufactured by Global Foundries on a 14nm process. While the move to a 7nm process provides many of Power10’s gains, there are also significant new features, not least what IBM calls Inception Memory that allows Power10 to access up to “multi petabytes” of pooled memory from diverse sources.

“You’re able to kind of trick a system into thinking that memory in another system belongs to this system. It isn’t like traditional [techniques] and doing an RDMA over InfiniBand to get access to people’s memory. This is programs running on my computer [that] can do load-store-access directly, coherently,” said William Starke, IBM distinguished engineer and a Power10 architect in a pre-briefing. “They use their caches [to] play with memory as if it’s in my system, even if it’s bridged by a cable over to another system. If we’re using short-reach cabling, we can actually do this with only 50-to-100 nanoseconds of additional latency. We’re not talking adding a microsecond or something like you might have over and RDMA.”

IBM is promoting Inception as a major achievement.

“HP came out with their big thing a few years ago. They called it The Machine and it was going to be their way of revolutionizing things largely by disaggregating memory. Intel you’ve seen from their charts talking about their Rack Scale architectures [that] they’re evolving toward. Well, this is IBM’s version of this and we have it today, in silicon. We are announcing we are able to take things outside of the system and aggregate the multiple systems together to directly share memory,” said Starke.

Inception is just one of many interesting features of Power10, which has roughly 18 billion transistors. IBM plans to offer two core types – 4 SMT (simultanous multi-threaded) cores and 8 SMT cores; IBM focused on the latter in today’s presentation. There are 16 cores on the chip and on/offchip bandwidth via the OMI interface or PoweAXON (for adding OpenCAPI accelerators) or PCIe5 interface, all of which are shown delivering up to 1 terabyte per sec on IBM’s slides.

CXL interconnect is not supported by Power10, which is perhaps surprising given the increasingly favorable comments about CXL from IBM over the past year.

Starke said as part of a Slack conversation tied to Hot Chips, “Does POWER10 support CXL? No, it does not. IBM created OpenCAPI because we believe in Open, and we have 10+ years of experience in this space that we want to share with the industry. We know that an asymmetric, host-dominant attach is the only way to make these things work across multiple companies. We are encouraged to see the same underpinnings in CXL. It’s open. It’s asymmetric. So it’s built on the right foundations. We are CXL members and we want to bring our know-how into CXL. But right now, CXL is a few years behind OpenCAPI. Until it catches up, we cannot afford to take a step backwards. Right now OpenCAPI provides a great opportunity to get in front of things that will become more mainstream as CXL matures.”

Below is the block diagram of IBM’s new Power10 chip showing major architecture elements.

The process shrink does play role in allowing to IBM to offer two packaging options shown below (slide below).

“We’re offering two versions of the processor module and were able to do this primarily because of the energy efficiency gains,” said Starke. “We’re bringing out a single chip module. There is one Power10 chip and exposing all those high bandwidth interfaces, so very high bandwidth per compute type of characteristics. [O]n the upper right you can see [it]. We build a 16-socket, large system that’s very robustly scalable. We’ve enjoyed success over the last several generations with this type of offering, and Power10 is going to be no different.

“On the bottom you see something a little new. We can basically take two Power10 processor chips and cram them into the same form factor where we used to put just one Power9 processor. We’re taking 1200 square millimeters of silicon and putting it into the same form factor. That’s going to be very valuable in compute-dense, energy-dense, volumetric space-dense cloud configurations, where we can build systems ranging from one to four sockets where those are dual chip module sockets as shown there on the lower right,” he said.

It will be interesting to see what sort of traction the two different offerings gain among non-IBM systems builders as well as hyperscalers. Broadly IBM is positioning Power10 as a strong fit for hybrid cloud, AI, and HPC environments. Hardware and firmware enhancements were made to support security, containerization, and inferencing, with IBM pointedly suggesting Power10 will be able to handle most inferencing workflows as well as GPUs.

Talking about security, Satya Sharma, IBM Fellow and CTO, IBM Cognitive Systems, said “Power10 implements transparent memory encryption, which is memory encryption without any performance degradation. When you do memory encryption in software, it usually leads to performance degradation. Power10 implements transparent hardware memory encryption.”

Sharma cited similar features for containers and acceleration cryptographic standards. IBM’s official announcement says Power10 is designed to deliver hardware-enforced container protection and isolation optimized with the IBM firmware and that Power10 can encrypt data 40 percent faster than Power9.

IBM also reports Power10 delivers a 10x-to-20x advantage over Power9 on inferencing workloads. Memory bandwidth and new instructions helped achieve those gains. One example is a new special purpose-built matrix math accelerator that was tailored for the demands of machine learning and deep learning inference and includes a lot of AI data types.

Focusing for a moment on dense-math-engine microarchitecture, Brian Thompto, distinguished engineer and Power10 designer, noted, “We also focused on algorithms that were hungry for flops, such as the matrix math utilized in deep learning. Every core has built in matrix math acceleration and efficiently performs matrix outer product operations. These operations were optimized across a wide range of data types. Recognizing that various precisions can be best suited for specific machine learning algorithms, we included very broad support: double precision, single precision, two flavors of half-precision doing both IEEE and bfloat16, as well as reduced precision integer 16-, eight-, and four-bit. The result is 64 flops per cycle, double precision, and up to one K flops per cycle of reduced precision per SMT core. These operations were tailor made to be efficient while applying machine learning.

“At the socket level, you get 10 times the performance per socket for double and single-precision, and using reduced precision, bfloat16 sped up to over 15x and int8 inference sped up to over 20x over Power9,” Thompto added.

More broadly, he said, “We have a host of new capabilities in ISA version 3.1. This is the new instruction set architecture that supports Power10 and is contributed to the OpenPOWER Foundation. The new ISA supports 64-bit prefixed instructions in a risk-friendly way. This is in addition to the classic way that we’ve delivered 32-bit instructions for many decades. It opens the door to adding new capabilities such as adding new addressing modes as well as providing rich new opcode space for future expansion.”

Link to Hot Chips: https://www.hotchips.org

Link to IBM Blog: https://newsroom.ibm.com/Stephen-Leonard-POWER10

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

AWS Arm-based Graviton3 Instances Now in Preview

December 1, 2021

Three years after unveiling the first generation of its AWS Graviton chip-powered instances in 2018, Amazon Web Services announced that the third generation of the processors – the AWS Graviton3 – will power all-new Amazon Elastic Compute 2 (EC2) C7g instances that are now available in preview. Debuting at the AWS re:Invent 2021... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies participated and, one of them, Graphcore, even held a separ Read more…

HPC Career Notes: December 2021 Edition

December 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

AWS Solution Channel

Running a 3.2M vCPU HPC Workload on AWS with YellowDog

Historically, advances in fields such as meteorology, healthcare, and engineering, were achieved through large investments in on-premises computing infrastructure. Upfront capital investment and operational complexity have been the accepted norm of large-scale HPC research. Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire