Cerebras Doubles AI Performance with Second-Gen 7nm Wafer Scale Engine

By Tiffany Trader

April 20, 2021

Nearly two years since its massive 1.2 trillion transistor Wafer Scale Engine chip debuted at Hot Chips, Cerebras Systems is announcing its second-generation technology (WSE-2), which its says packs twice the performance into the same 8″x8″ silicon footprint.

“We’re going bigger, faster and better in a more power efficient footprint,” Cerebras Founder and CTO Andrew Feldman told HPCwire ahead of today’s launch.

Cerebras datacenter

With 2.6 trillion transistors and 850,000 cores, the WSE-2 more than doubles the elements on the first-gen chip (1.2 trillion transistors, 400,000 cores). The new chip, made by TSMC on its 7nm node, delivers 40 GB of on-chip SRAM memory, 20 petabytes of memory bandwidth and 220 petabits of aggregate fabric bandwidth. Gen over gen, the WSE-2 provides about 2.3X on all major performance metrics, said Feldman.

Compared to the the largest GPU, which has ~54 billion transistors, the WSE-2 is 2.55 trillion transistors larger. Further, Cerebras claims its new platform has 123 times more cores, 1,000 times more on-chip memory, more than 12,000 times the memory bandwidth and more than 45,000 times the fabric bandwidth as the leading GPU.

Both Cerebras’ first and second generation chips are created by removing the largest possible square from a 300 mm wafer to create 46,000 square millimeter chips roughly the size of a dinner plate. An array of repeated identical tiles (84 of them) is built into the wafer, enabling redundancy.

To drive its new engine, Cerebras designed and built its next-generation system, the CS-2, which it bills as the industry’s fastest AI supercomputer. Like the original CS-1, CS-2 employs internal water cooling in a 15 unit rack enclosure with 12 lanes of 100 Gigabit Ethernet.

The new system has a max power draw of 23 kW, up from 20 kW max for the original chassis. “We tried to stay in the original power envelope, and made some changes in the system to take full advantage of the power envelope,” said Feldman.

Feldman said that the last two years have taught him how valuable it is for a system to be physically easy to deploy. The “CS” systems weigh approximately 500 lbs, about the same as 15 RU servers, but deploy in just 15 minutes, he said, adding that cabling projects on a typical cluster can take weeks.

Looking further back to when Cerebras was still designing its first-generation product and charting its go-to-market strategy, Feldman said that he originally underestimated the size of the market due to how quickly the space is moving.

“In my career, I’ve always misestimated on the too big side. I’ve always assumed the market was going to be bigger than it is,” he shared. “In 2015, I estimated the market will be smaller than it is, and the demand for AI and the the rate of innovation.

Cerebras CS-2

“We’re selling a lot of systems to do BERT. BERT didn’t exist the first half of 2018, right? That’s a quick moving market if what hadn’t yet existed until Q3 2018 is [now] the bulk of business. And things that are brand new, like graph neural networks, are piquing people’s interest and top of everybody’s mind. The market is moving unbelievably quickly.”

Making the leap to wafer-scale

As Feldman describes it, codes that have been optimized for CS-1’s 400,000 cores will scale to leverage CS-2’s 850,000 cores without any modification. Further, he attests that GPU codes are easy to port to the Cerebras platform. “We can take as input any TensorFlow or PyTorch model designed for a GPU. You define your model and write it in TensorFlow, that’s your model function. You define your parameters, that’s your input function. All you have to do is take your TensorFlow code, and type one thing: “est = CerebrasEstimator.

CerebrasEstimator

“That’s how you take a model that was written for a GPU and run it on our machine,” he said. “Each layer of your neural network is converted into a region of compute. Then we configure a circuit through it, begin streaming your data, and we send out the answers.” (See figure below.)

The CTO further claimed it is easier to go from a model written for one GPU to a Cerebras CS-1, than it is to go from a model written for one GPU to 20 GPUs.

Primarily dedicated to AI computing, the Cerebras engine is also being applied to HPC workloads. At last year’s Supercomputing Conference, researchers from Cerebras and NETL revealed how the CS-1 was being used perform fast stencil-code computation (a CFD code), demonstrating a speed up of 200X over the largest existing supercomputers.

How big is too big?

Data Streaming on WSE. Source: Cerebras.

With a chip this size, the question arises as to whether users can fill up all that silicon real estate? Are today’s models able to take advantage of an 850,000 core machine? Feldman said there’s no question the demand is there for the larger Cerebras machine, and he sees smaller size platforms (including GPUs) as being primarily for entry-level use cases.

“If you’re happy on one GPU, then we’re not the machine for you,” he said. “But we think that is a small part of the market. As soon as you do work on one GPU, you want more, you want to write bigger models. When you use AI to further the mission of your organization – those are our customers, not the hobbyist.”

Users who need a smaller slice of the Cerebras engine may still be in luck, however. Cerebras plans to announce a cloud offering down the road, according to Feldman.

Some big name wins

Cerebras has racked up a number of key deployments over the last two years, including cornerstone wins with the U.S. Department of Energy, which has CS-1 installations at Argonne National Laboratory and Lawrence Livermore National Laboratory. CS-1 systems are also in place at Pittsburgh Supercomputer Center, EPCC and GlaxoSmithKline, and Cerebras says it has customers in the heavy manufacturing, pharma, biotech, and the military and intelligence sectors.

CS-2 systems will begin shipping in the third quarter of this year, according to Cerebras, and current customers GlaxoSmithKline and Argonne National Lab are expected to be among the the first to take delivery of the upgraded machines.

“At GSK, we are pioneering the use of AI in drug discovery and design,” said Kim Branson, executive vice president of AI, GlaxoSmithKline. “We have been early adopters of the Cerebras technology and have found extraordinary speedups over our legacy infrastructure. We are excited to receive delivery of our CS-2.”

“As an early customer of Cerebras solutions, we have experienced performance gains that have greatly accelerated our scientific and medical AI research,” said Rick Stevens, Argonne National Laboratory associate laboratory director for computing, environment and life sciences, in a statement. “The CS-1 allowed us to reduce the experiment turnaround time on our cancer prediction models by 300X over initial estimates, ultimately enabling us to explore questions that previously would have taken years, in mere months. We look forward to seeing what the CS-2 will be able to do with more than double that performance.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Quinn in a presentation delivered to the 79th HPC User Forum Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watch. McVeigh shares Intel's plans for the year ahead, his pers Read more…

AWS Solution Channel

Shutterstock 1413860048

Indivumed Boosts Cancer Research With Powerful Analytics Built on AWS

Hamburg-based Indivumed specializes in using the highest quality biospecimen and comprehensive clinical data to advance research and development in precision oncology. Its IndivuType discovery solution uses AWS to store data and support analysis to decipher the complexity of cancer. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1179306271

Using Cloud-Based, GPU-Accelerated AI to Track Identity Fraud

Consumers use many accounts for financial transactions, ordering products, and social media—a customer’s identity can be stolen using any of these accounts. Identity fraud can happen when setting up or using financial accounts, but it can also occur with communications such as audio, images, and chats. Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Intel CPUs and GPUs across multiple partitions. The newly reimag Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watc Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

D-Wave Debuts Advantage2 Prototype; Seeks User Exploration and Feedback

June 16, 2022

Starting today, D-Wave Systems is providing access to a 500-plus-qubit prototype of its forthcoming 7000-qubit Advantage2 quantum annealing computer, which is d Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Covid Policies at HPC Conferences Should Reflect HPC Research

June 6, 2022

Supercomputing has been indispensable throughout the Covid-19 pandemic, from modeling the virus and its spread to designing vaccines and therapeutics. But, desp Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire