Cerebras Doubles AI Performance with Second-Gen 7nm Wafer Scale Engine

By Tiffany Trader

April 20, 2021

Nearly two years since its massive 1.2 trillion transistor Wafer Scale Engine chip debuted at Hot Chips, Cerebras Systems is announcing its second-generation technology (WSE-2), which its says packs twice the performance into the same 8″x8″ silicon footprint.

“We’re going bigger, faster and better in a more power efficient footprint,” Cerebras Founder and CTO Andrew Feldman told HPCwire ahead of today’s launch.

Cerebras datacenter

With 2.6 trillion transistors and 850,000 cores, the WSE-2 more than doubles the elements on the first-gen chip (1.2 trillion transistors, 400,000 cores). The new chip, made by TSMC on its 7nm node, delivers 40 GB of on-chip SRAM memory, 20 petabytes of memory bandwidth and 220 petabits of aggregate fabric bandwidth. Gen over gen, the WSE-2 provides about 2.3X on all major performance metrics, said Feldman.

Compared to the the largest GPU, which has ~54 billion transistors, the WSE-2 is 2.55 trillion transistors larger. Further, Cerebras claims its new platform has 123 times more cores, 1,000 times more on-chip memory, more than 12,000 times the memory bandwidth and more than 45,000 times the fabric bandwidth as the leading GPU.

Both Cerebras’ first and second generation chips are created by removing the largest possible square from a 300 mm wafer to create 46,000 square millimeter chips roughly the size of a dinner plate. An array of repeated identical tiles (84 of them) is built into the wafer, enabling redundancy.

To drive its new engine, Cerebras designed and built its next-generation system, the CS-2, which it bills as the industry’s fastest AI supercomputer. Like the original CS-1, CS-2 employs internal water cooling in a 15 unit rack enclosure with 12 lanes of 100 Gigabit Ethernet.

The new system has a max power draw of 23 kW, up from 20 kW max for the original chassis. “We tried to stay in the original power envelope, and made some changes in the system to take full advantage of the power envelope,” said Feldman.

Feldman said that the last two years have taught him how valuable it is for a system to be physically easy to deploy. The “CS” systems weigh approximately 500 lbs, about the same as 15 RU servers, but deploy in just 15 minutes, he said, adding that cabling projects on a typical cluster can take weeks.

Looking further back to when Cerebras was still designing its first-generation product and charting its go-to-market strategy, Feldman said that he originally underestimated the size of the market due to how quickly the space is moving.

“In my career, I’ve always misestimated on the too big side. I’ve always assumed the market was going to be bigger than it is,” he shared. “In 2015, I estimated the market will be smaller than it is, and the demand for AI and the the rate of innovation.

Cerebras CS-2

“We’re selling a lot of systems to do BERT. BERT didn’t exist the first half of 2018, right? That’s a quick moving market if what hadn’t yet existed until Q3 2018 is [now] the bulk of business. And things that are brand new, like graph neural networks, are piquing people’s interest and top of everybody’s mind. The market is moving unbelievably quickly.”

Making the leap to wafer-scale

As Feldman describes it, codes that have been optimized for CS-1’s 400,000 cores will scale to leverage CS-2’s 850,000 cores without any modification. Further, he attests that GPU codes are easy to port to the Cerebras platform. “We can take as input any TensorFlow or PyTorch model designed for a GPU. You define your model and write it in TensorFlow, that’s your model function. You define your parameters, that’s your input function. All you have to do is take your TensorFlow code, and type one thing: “est = CerebrasEstimator.

CerebrasEstimator

“That’s how you take a model that was written for a GPU and run it on our machine,” he said. “Each layer of your neural network is converted into a region of compute. Then we configure a circuit through it, begin streaming your data, and we send out the answers.” (See figure below.)

The CTO further claimed it is easier to go from a model written for one GPU to a Cerebras CS-1, than it is to go from a model written for one GPU to 20 GPUs.

Primarily dedicated to AI computing, the Cerebras engine is also being applied to HPC workloads. At last year’s Supercomputing Conference, researchers from Cerebras and NETL revealed how the CS-1 was being used perform fast stencil-code computation (a CFD code), demonstrating a speed up of 200X over the largest existing supercomputers.

How big is too big?

Data Streaming on WSE. Source: Cerebras.

With a chip this size, the question arises as to whether users can fill up all that silicon real estate? Are today’s models able to take advantage of an 850,000 core machine? Feldman said there’s no question the demand is there for the larger Cerebras machine, and he sees smaller size platforms (including GPUs) as being primarily for entry-level use cases.

“If you’re happy on one GPU, then we’re not the machine for you,” he said. “But we think that is a small part of the market. As soon as you do work on one GPU, you want more, you want to write bigger models. When you use AI to further the mission of your organization – those are our customers, not the hobbyist.”

Users who need a smaller slice of the Cerebras engine may still be in luck, however. Cerebras plans to announce a cloud offering down the road, according to Feldman.

Some big name wins

Cerebras has racked up a number of key deployments over the last two years, including cornerstone wins with the U.S. Department of Energy, which has CS-1 installations at Argonne National Laboratory and Lawrence Livermore National Laboratory. CS-1 systems are also in place at Pittsburgh Supercomputer Center, EPCC and GlaxoSmithKline, and Cerebras says it has customers in the heavy manufacturing, pharma, biotech, and the military and intelligence sectors.

CS-2 systems will begin shipping in the third quarter of this year, according to Cerebras, and current customers GlaxoSmithKline and Argonne National Lab are expected to be among the the first to take delivery of the upgraded machines.

“At GSK, we are pioneering the use of AI in drug discovery and design,” said Kim Branson, executive vice president of AI, GlaxoSmithKline. “We have been early adopters of the Cerebras technology and have found extraordinary speedups over our legacy infrastructure. We are excited to receive delivery of our CS-2.”

“As an early customer of Cerebras solutions, we have experienced performance gains that have greatly accelerated our scientific and medical AI research,” said Rick Stevens, Argonne National Laboratory associate laboratory director for computing, environment and life sciences, in a statement. “The CS-1 allowed us to reduce the experiment turnaround time on our cancer prediction models by 300X over initial estimates, ultimately enabling us to explore questions that previously would have taken years, in mere months. We look forward to seeing what the CS-2 will be able to do with more than double that performance.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Weekly Wire Roundup: July 8-July 12, 2024

July 12, 2024

HPC news can get pretty sleepy in June and July, but this week saw a bump in activity midweek as Americans realized they still had work to do after the previous holiday weekend. The world outside the United States also s Read more…

Nvidia, Intel not Welcomed in New Apple AI and HPC Development Tools

July 12, 2024

New Mac developer tools will leverage Apple's homegrown chips, limiting HPC users' ability to use parallel programming frameworks from Intel or Nvidia. Apple's latest programming framework, Xcode 16, was introduced at Read more…

Virga: Australia’s New HPC and AI Powerhouse

July 11, 2024

Australia has officially added another supercomputer to the TOP500 list with the implementation of Virga. Officially coming online in June 2024, Virga is the newest HPC system to come out of the Australian Commonwealth S Read more…

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and implementation phases of the Quantum Quantum Science and Technolo Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the software, and selecting the best user interface. The National Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three of the 10 highest-ranking Top500 systems, but some other ne Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

US Senators Propose $32 Billion in Annual AI Spending, but Critics Remain Unconvinced

July 5, 2024

Senate leader, Chuck Schumer, and three colleagues want the US government to spend at least $32 billion annually by 2026 for non-defense related AI systems.  T Read more…

Point and Click HPC: High-Performance Desktops

July 3, 2024

Recently, an interesting paper appeared on Arvix called Use Cases for High-Performance Research Desktops. To be clear, the term desktop in this context does not Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Leading Solution Providers

Contributors

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire