Cerebras Doubles AI Performance with Second-Gen 7nm Wafer Scale Engine

By Tiffany Trader

April 20, 2021

Nearly two years since its massive 1.2 trillion transistor Wafer Scale Engine chip debuted at Hot Chips, Cerebras Systems is announcing its second-generation technology (WSE-2), which its says packs twice the performance into the same 8″x8″ silicon footprint.

“We’re going bigger, faster and better in a more power efficient footprint,” Cerebras Founder and CTO Andrew Feldman told HPCwire ahead of today’s launch.

Cerebras datacenter

With 2.6 trillion transistors and 850,000 cores, the WSE-2 more than doubles the elements on the first-gen chip (1.2 trillion transistors, 400,000 cores). The new chip, made by TSMC on its 7nm node, delivers 40 GB of on-chip SRAM memory, 20 petabytes of memory bandwidth and 220 petabits of aggregate fabric bandwidth. Gen over gen, the WSE-2 provides about 2.3X on all major performance metrics, said Feldman.

Compared to the the largest GPU, which has ~54 billion transistors, the WSE-2 is 2.55 trillion transistors larger. Further, Cerebras claims its new platform has 123 times more cores, 1,000 times more on-chip memory, more than 12,000 times the memory bandwidth and more than 45,000 times the fabric bandwidth as the leading GPU.

Both Cerebras’ first and second generation chips are created by removing the largest possible square from a 300 mm wafer to create 46,000 square millimeter chips roughly the size of a dinner plate. An array of repeated identical tiles (84 of them) is built into the wafer, enabling redundancy.

To drive its new engine, Cerebras designed and built its next-generation system, the CS-2, which it bills as the industry’s fastest AI supercomputer. Like the original CS-1, CS-2 employs internal water cooling in a 15 unit rack enclosure with 12 lanes of 100 Gigabit Ethernet.

The new system has a max power draw of 23 kW, up from 20 kW max for the original chassis. “We tried to stay in the original power envelope, and made some changes in the system to take full advantage of the power envelope,” said Feldman.

Feldman said that the last two years have taught him how valuable it is for a system to be physically easy to deploy. The “CS” systems weigh approximately 500 lbs, about the same as 15 RU servers, but deploy in just 15 minutes, he said, adding that cabling projects on a typical cluster can take weeks.

Looking further back to when Cerebras was still designing its first-generation product and charting its go-to-market strategy, Feldman said that he originally underestimated the size of the market due to how quickly the space is moving.

“In my career, I’ve always misestimated on the too big side. I’ve always assumed the market was going to be bigger than it is,” he shared. “In 2015, I estimated the market will be smaller than it is, and the demand for AI and the the rate of innovation.

Cerebras CS-2

“We’re selling a lot of systems to do BERT. BERT didn’t exist the first half of 2018, right? That’s a quick moving market if what hadn’t yet existed until Q3 2018 is [now] the bulk of business. And things that are brand new, like graph neural networks, are piquing people’s interest and top of everybody’s mind. The market is moving unbelievably quickly.”

Making the leap to wafer-scale

As Feldman describes it, codes that have been optimized for CS-1’s 400,000 cores will scale to leverage CS-2’s 850,000 cores without any modification. Further, he attests that GPU codes are easy to port to the Cerebras platform. “We can take as input any TensorFlow or PyTorch model designed for a GPU. You define your model and write it in TensorFlow, that’s your model function. You define your parameters, that’s your input function. All you have to do is take your TensorFlow code, and type one thing: “est = CerebrasEstimator.

CerebrasEstimator

“That’s how you take a model that was written for a GPU and run it on our machine,” he said. “Each layer of your neural network is converted into a region of compute. Then we configure a circuit through it, begin streaming your data, and we send out the answers.” (See figure below.)

The CTO further claimed it is easier to go from a model written for one GPU to a Cerebras CS-1, than it is to go from a model written for one GPU to 20 GPUs.

Primarily dedicated to AI computing, the Cerebras engine is also being applied to HPC workloads. At last year’s Supercomputing Conference, researchers from Cerebras and NETL revealed how the CS-1 was being used perform fast stencil-code computation (a CFD code), demonstrating a speed up of 200X over the largest existing supercomputers.

How big is too big?

Data Streaming on WSE. Source: Cerebras.

With a chip this size, the question arises as to whether users can fill up all that silicon real estate? Are today’s models able to take advantage of an 850,000 core machine? Feldman said there’s no question the demand is there for the larger Cerebras machine, and he sees smaller size platforms (including GPUs) as being primarily for entry-level use cases.

“If you’re happy on one GPU, then we’re not the machine for you,” he said. “But we think that is a small part of the market. As soon as you do work on one GPU, you want more, you want to write bigger models. When you use AI to further the mission of your organization – those are our customers, not the hobbyist.”

Users who need a smaller slice of the Cerebras engine may still be in luck, however. Cerebras plans to announce a cloud offering down the road, according to Feldman.

Some big name wins

Cerebras has racked up a number of key deployments over the last two years, including cornerstone wins with the U.S. Department of Energy, which has CS-1 installations at Argonne National Laboratory and Lawrence Livermore National Laboratory. CS-1 systems are also in place at Pittsburgh Supercomputer Center, EPCC and GlaxoSmithKline, and Cerebras says it has customers in the heavy manufacturing, pharma, biotech, and the military and intelligence sectors.

CS-2 systems will begin shipping in the third quarter of this year, according to Cerebras, and current customers GlaxoSmithKline and Argonne National Lab are expected to be among the the first to take delivery of the upgraded machines.

“At GSK, we are pioneering the use of AI in drug discovery and design,” said Kim Branson, executive vice president of AI, GlaxoSmithKline. “We have been early adopters of the Cerebras technology and have found extraordinary speedups over our legacy infrastructure. We are excited to receive delivery of our CS-2.”

“As an early customer of Cerebras solutions, we have experienced performance gains that have greatly accelerated our scientific and medical AI research,” said Rick Stevens, Argonne National Laboratory associate laboratory director for computing, environment and life sciences, in a statement. “The CS-1 allowed us to reduce the experiment turnaround time on our cancer prediction models by 300X over initial estimates, ultimately enabling us to explore questions that previously would have taken years, in mere months. We look forward to seeing what the CS-2 will be able to do with more than double that performance.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire