Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

By Tiffany Trader

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed by Livermore Computing CTO Bronis de Supinski at the Riken-CCS International Symposium, which took place earlier this week (Jan. 15).

A 2 exaflops supercomputer slated for delivery at Livermore in late 2022 or early 2023, El Capitan is a partnership between the Department of Energy lab and HPE (which acquired Cray in 2019). As has been previously disclosed, El Capitan will be powered by AMD CPUs and GPUs as part of the Cray EX architecture (formerly known as Shasta) with Slingshot networking.

Under a non recurring engineering (NRE) contract funded by Livermore, HPE is developing near node local storage technology that it calls its Rabbit program. De Supinski explains that NRE contracts allow procurers, such as Livermore, to improve elements of the overall system, and those innovations then flow to the broader HPC market through the partnering vendor’s portfolio. 

At its core, Rabbit is a 4U solution for node local storage that encompasses 18 SSDs (16 and 2 spares) and one (AMD Epyc) storage processor. HPE refers to Rabbit as near node local storage that combined with its custom Rabbit software supports a wide range of use cases, including resolving network bursts, optimizing input, and even running analysis processes.

De Supinski described the arrangement: “You have PCI connections from each of the compute nodes into what HPE calls the Rabbit-S boards, and that gives you a PCIe network that connects you to a fairly large number of SSDs and also to a Rabbit-P board, which has a separate AMD processor located on it that allows you to interact with the storage independent of the compute blades.”

Here’s what HPE expects the Rabbit design to look like:

“If we think about how Rabbit works, this is really like building a little nest of PCIe networks within the larger system,” said de Supinski.

The 4U Rabbit box plugs into the back of the Cray XE racks, where the switch modules are housed. “Instead of populating all the switch blades, which would have given us far more interconnect bandwidth than we feel our workloads need, we’re going to populate some of those slots with Rabbit modules,” said de Supinski.

The HPE Rabbit software is of course where much of the magic happens and allows the SSDs to be accessed both as direct attached storage and network attached storage. “You can actually access the SSDs directly from the compute blade, or you can treat it as just a block storage device allocated to a specific compute blade,” said de Supinski.

Rabbit can be implemented as a “transient Lustre file system” across the compute blades. The software facilitates moving files from these block devices — these transient Lustre file systems — to the capability tier of the overall IO subsystem of El Capitan, said De Supinski. “It will automate movements between these different tiers, but they are effectively very different in how we intend to use them.”

Another important aspect of the Rabbit software is it allows customer code to be run in containers on the Rabbit processors. This ties to Livermore’s choice of resource manager for El Capitan, which is Flux, a departure from Slurm. Designed by Livermore, Flux has awareness of the local compute node relationship to the SSDs, which is not supported in Slurm, according to de Supinski.

De Supinski reviewed some of the different use cases that Rabbit will facilitate at Livermore that make sense for the lab’s IO patterns. “There’s productive output, which is really the reason we run the simulations,” he shared. “And there’s checkpoints [typically a defensive output]. Those checkpoints can be one per MPI process, or at least one per all of the processes running on a given compute node. Or they can be shared across multiple processes and frequently across all of the processes in a given job. And so that’s this N-to-N versus N-to-M checkpoint.

“What we actually see in our jobs is frequently a combination of these where they maybe have a shared file that’s accessed by all of the processes in the job and then they write the bulk of their data to a file per compute process. And then you can have things that are semi-defensive or are semi-productive. In fact, it turns out that usually our application sciences want to use a checkpoint for subsequent data analysis.”

Using Rabbit to run analysis processes is an attractive use case for Livermore, and both post facto and in transit data analysis can be done in containers running on the Rabbit processors.

Like other leading HPC centers, Livermore has experienced compute capability outpacing the ability to deploy large file systems. “The cost would make it so that basically we can’t save all those checkpoints,” said de Supinski. “We tend to do much less input than output. The input can be executables, things like the applications themselves, but also operating system files and other system software files. We have the simulation input, which may just be something as simple as the parameters of a job, or you can restart data, i.e. the checkpoints that were previously output.”

The lab anticipates using Rabbit for caching OS files in order to reduce boot time, and notes that Rabbit will be an efficient input mechanism for machine learning model training.

When Rabbit is used as network attached storage, it’s as if the NVRAM servers were directly attached to the interconnect. While that does a good job of alleviating the swamping of the storage area network, it doesn’t alleviate the problem of swamping the high performance interconnect, said de Supinski. To address this, Livermore is developing a file system called UnifyFS. “We will use the Rabbit processors to run that, use the PCIe connections to access those disks, but with a file system that gives us shared file access.”  

Livermore is planning to put one Rabbit module in every El Capitan compute chassis (each chassis houses 8 blades / 16 compute nodes). “We expect that using these Rabbit models is going to significantly reduce system interference from IO on the overall system,” said de Supinski.

Checkpointing is the lab’s top priority, but other aspects of IO are becoming more important. De Supinski believes the Rabbit modules will support these other storage workloads very well. 

“When we were evaluating the responses we got to the CORAL-2 RFP at Livermore, we found the Rabbit solution to be one of the key innovations that HPE was offering,” said de Supinski. “It was a significant factor in our choice of the Cray response for El Capitan.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire